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a b s t r a c t

In this paper, we are interested in nonlinear pseudoparabolic problems of type:

f (t, x, ∂tu)− Div[a(x, u, ∂tu)∇u] − Div[b(x, u, ∂tu)∇∂ut ] = g.

f is a nondecreasing continuous function with respect to its third argument, a is bounded
and b is positive and bounded.

The result of existence is proved thanks to a time discretization scheme. Then, we
derive some applications to the equation of Barenblatt, a degenerate case and differential
inclusions. Finally, some numerical illustrations are proposed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are interested in nonlinear pseudoparabolic problems, i.e., when the time derivative of the unknown is
present in the main operator. The study of such types of problems is not new; let us cite the works of:

Sobolev inmechanics and Physics [1]. In the linear case, one gets ∂tu−a1u−b1∂tu = g and one talks about the equation
of Sobolev.

Barenblatt et al. [2] concerning seepage of homogeneous liquids in fissured rocks, and [3,4] concerning fluid flow where
the equations are: ∂tu = ∂xϕ(∂xu)+ τ∂2xtψ(∂xu) or ∂tu + ∂x[ϕ(u)+ τ∂tϕ(u)] = ∂2xx[ψ(u)+ τ∂tψ(u)].

Showalter [5] (p. 202 & 235) for hysteretic effects in fluid flows, and Showalter et al. [6,7], where the authors have studied
the problem: M∂tu + Lu = f , where M and L are differential operators. Note that if M−1 exists, then the problem reads
∂tu + M−1Lu = M−1f .

Considering flows in porous media, Hulshof and King [8] have introduced dynamic effects in the saturation-pressure
relation and have proposed the pseudo-parabolic formulation: ∂tu = ∂x(uα∂xu) + ∂x(uβ∂2xtu). Then, thanks to a notion
of dynamic capillarity pressure, Cuesta and Hulshof [9] and Garcia-Azorero and De Pablo [10] were interested in the
pseudoparabolic problems: ∂tu = ∂2xxu + 2u∂xu + ϵ2∂3xxtu and ∂tu = ∂2xxϕ(u)+ τ 2∂3xxtϕ(u).

Pseudoparabolic operators have also been used in singular perturbation techniques. Let us cite, for example:
Ewing [11,12] for the perturbation of a backward parabolic operator;
Plotnikov [13] where, assuming that ϕ is not a priori nondecreasing, the author has studied the limit when ϵ goes to 0 in
∂tu = 1ϕ(u)+ ϵ1∂tu (see [14] p. 426–430 too);
van Duijn et al. [15] where the following singular perturbation ∂tu + ∂xf (u) = ϵ∂2xxu + ϵ2τ∂3xxtu has been considered. They
then noticed that the corresponding solution is not an entropy solution in the sense of Oleinik of the equation of Burgers.

Without trying to be exhaustive, let us cite some other works with pseudoparabolic equations: Ang and Tran [16] and
Benjamin et al. [17] concerning long waves in nonlinear dispersive systems; Bouziani and Merazga [18] for dynamics of
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moisture transfer in a subsoil layer; Düll [19] for solvent uptake in polymeric solids; Kaikina [20] concerning global solutions;
Korpusov [21] for quasistationary processes in dispersionless conducting media; Padrón [22] in population dynamics and
Sviridyuk and Karamova [23] for semiconducting plasma.

As mentioned by Showalter in [5], memory effects in nonlinear pseudoparabolic problems prevent the existence of easy
results of uniqueness. On this subject, let us cite for example [24] where a transposition method of Holmgren’s type is
proposed and Antontsev et al. [25] where a Lp (p > 2) regularity is used to prove the uniqueness of the solution of the
problem ∂tu − div[λ(u)a(∂tu + E)∇u] − τdiv[λ(u)∇∂tu] = 0.

Unlike many of the above mentioned papers, we will be interested in the sequel by equations involving nonlinear
functions of ∂tu. Indeed, this paper is part of a sequel of papers of one of the authors, devoted to a model of a sedimentary
basin in stratigraphic Geology (see [26–28,25,29–32]). This model is based on amass conservation equation: ∂tu+Div{q⃗} =

0, where the flux q⃗ satisfies a ‘‘Darcy (τ = 0)’’ or a dynamic ‘‘Darcy–Barenblatt (τ > 0)’’ law: q⃗ = −λ(∇u + τ∇∂tu).
Moreover, the ‘‘weather limited’’ constraint ∂tu + E ≥ 0 is imposed in the domain, so that the model becomes

0 ∈ ∂tu − Div[H(∂tu + E)∇(u + τ∂tu)] where H denotes the graph of Heaviside. Hence our interest for equations of
type

f (t, x, ∂tu)− div[a(x, u, ∂tu)∇u + b(x, u, ∂tu)∇∂tu] = g. (1)

Let us mention other works in the literature where such kinds of nonlinear terms are used. Let us start with the classical
equation of Barenblatt given by f (∂tu) + Au = 0 where f (x) = x + γ |x| and Au = −1u in [33]; f (x) = x + γ x+ and
Au = −1um in [34] or f (x) = |x|m−1(x + γ |x|) and Au = −∆pu in [35].

In these papers, the authors were mainly interested in self-similar solutions.
In [36] (p. 81 sqq.), M. Ptashnyk has considered problems of reaction–diffusion of biological, chemical or physical

substances modeled by:

f (t, x, ∂tu)− div[a(t, x)h(u)∇u] − div[b(t, x,∇∂tu)] = g(t, x, u).

The author has proved the existence of a solution by using a singular perturbation method by a second order hyperbolic
operator and monotonocity arguments. This fails when the function a depends on ∂tu.

A similar technique has been proposed by Colli et al. in [37] for the following differential inclusion: g ∈ µ∂tχ+α(∂tχ)−
δ1∂tχ − ν1χ + β(χ), and by Schimperna et al. [38] and Segatti [39] for: g ∈ A(∂tu) + B(u) + h(u), where A and B are
maximal monotone operators given by the subdifferential of some convex functions.

In order to finish this survey, let us cite Beliaev [40] for the problem: ∂tu ∈ ∆{[1 + κSign(∂tu)]um
}, and Schweizer [41]

for: ∂tu ∈ Div[au + b + γ sign(∂tu)], where the authors were interested in a hysteretic porous medium.
At the end of the introduction, one will give the definition of a solution to Problem (1) in H1(0, T ,H1

0 (Ω)) = {u ∈

L2(0, T ,H1
0 (Ω)), ∂tu ∈ L2(0, T ,H1

0 (Ω))}. In a new section, one will prove the main result of this paper, i.e. the existence of
a solution. Then, one will derive some applications to Barenblatt’s equation and to pseudoparabolic differential inclusions.
Some numerical illustrations will be given in a last section.

Let us consider in the sequel a bounded Lipschitz domainΩ ⊂ Rd, T > 0, Q =]0, T [×Ω and denote by ‖.‖H1
0 (Ω)

: u →

‖∇u‖L2(Ω) the norm of Poincaré. Then, let us denote by (H) the following hypotheses:

H1: a and b are continuous functions overΩ × R × R such that:

∃β, M > 0, ∀(x, u, v) ∈ Ω × R2, |a(x, u, v)| ≤ M, β ≤ b(x, u, v) ≤ M,

moreover a (resp. b) is Hölder continuous with exponent θa (resp. θb) with respect to u, v with θa, θb ≥
1
2 .

H2: f is a Carathéodory function over Q × R such that f̃ (L2(Q )) ⊂ L2(Q ) where f̃ denotes the operator of Nemytskii1
associated with f . Moreover, one considers one of the two hypotheses: either H2,1: u → f (., u) is an increasing
function; or H2,2: u → f (., u) is a nondecreasing function and a, b are Lipschitz continuous.

H3: g ∈ L2(0, T ,H−1(Ω)) and u0 ∈ H1
0 (Ω).

Then, one would say that

Definition 1. A solution to Problem (1) is any u ∈ H1(0, T ;H1
0 (Ω)) such that for any v ∈ H1

0 (Ω) and t ∈]0, T [ a.e.,∫
Ω

{f (t, x, ∂tu)v + [a(x, u, ∂tu)∇u + b(x, u, ∂tu)∇∂tu]∇v}dx = ⟨g, v⟩H−1(Ω),H1
0 (Ω)

(2)

with the initial condition u(0, ·) = u0.

1 Cf. Definition 2.
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2. Results on Carathéorody functions

Let us recall in this section that (Cf. [42] p. 5 sqq, [43], [44] p. 77, [45] p. 407 sqq, [46] p. 22 sqq).

Definition 2. 1. f is a Carathéodory function onQ×R (we say aC-function) if for any realu, (t, x) → f (t, x, u) ismeasurable
and if for (t, x) a.e. in Q , u → f (t, x, u) is continuous.

2. If f is a Carathéodory function, for any measurable function u : Q → R, f (., ., u) is measurable. One denotes by
f̃ : u → f̃ (u) = f (., ., u). It is the Nemytskii’s operator associated with f .

Theorem 1. If f is a C-function, the following assertions are equivalent:

1. ∃a1, a2 ∈ L2(Q )× R+, (t, x) ∈ Q a.e, ∀u ∈ R, |f̃ (u)| ≤ a1 + a2|u|, (3)

2. f̃ (L2(Q )) ⊂ L2(Q ), i.e. ∀u ∈ L2(Q ), f̃ (u) ∈ L2(Q ),

3. f̃ is bounded and continuous in L2(Q ).

Remark 1. Thus, there exists Z1 ⊂]0, T [ of full measure such that, for any t in Z1, a1(t, .) ∈ L2(Ω), f (t, ., .) is a C-function
onΩ × R such that f̃ (t, ., .) is continuous on L2(Ω) and

∀t ∈ Z1 x ∈ Ω a.e, ∀u ∈ R, |f (t, x, u)| ≤ a1(t, x)+ a2|u|.

Let us denote by (ρn) the classical mollifier sequence and by

fn(t, x, u) =

∫
Q
f (s, y, u)ρn(t − s, x − y)dsdy.

Proposition 1. If f is a C-function with a continuous Nemytskii’s operator in L2(Q ), then fn is continuous on Q × R.

Proof. This is a consequence of the regularity of the mollifier sequence and the hypothesis on f̃ . �

Remark 2. If f is a C-function satisfying (3) then, ∀(t, x, u) ∈ Q × R,

|fn(t, x, u)| ≤ a1 ∗ ρn(t, x)+ a2|u| ≤ ‖a1 ∗ ρn‖∞ + a2|u|.

Up to a subsequence, still indexed by n, there exists h ∈ L2(Q ) such that 0 ≤ a1 ∗ ρn ≤ h a.e. in Q . Thus, it is possible to
assume that (3) holds with the same function a1, for f̃ as well as for f̃n, in Remark 1.

Lemma 1. Let f be a C-function satisfying (3). Then, there exists Z2 ⊂ Z1 (2) ⊂]0, T [ of full measure such that if (un) ⊂ L2(Ω)
converges weakly to u in H1(Ω), then, for any t in Z2, fn(t, ., un) converges to f (t, ., u) in L2(Ω).

Proof. Let k ∈ N∗, ϕk ∈ C(R) such that 1[−k,k] ≤ ϕk ≤ 1[−k−1,k+1] and denote by:
f k : (t, x, u) → f (t, x, u)ϕk(u) and f kn : (t, x, u) → fn(t, x, u)ϕk(u).
Then, thanks to Berliocchi et al. [43] (Remark 5 p. 135), f k ∈ L2(Q , C[−k − 1, k + 1]) and f kn converges to f k in

L2(Q , C[−k − 1, k + 1]). Thus, up to a subsequence still denoted by (f kn ), there exists Z2 ⊂ Z1 ⊂]0, T [ of full measure
such that, for any t in Z2 and any positive integer k, f kn (t, ., .) converges to f k(t, ., .) in L2(Ω, C[−k − 1, k + 1]). Therefore,∫

Ω

|fn(t, x, un(x))− f (t, x, un(x))|2 dx ≤ C
∫
Ω

[‖f kn (t, x, .)− f k(t, x, .)‖2
∞

+ [a21(t, x)+ a22|un|
2
](1 − ϕk(un))

2
]dx.

And,

lim sup
n→∞

∫
Ω

|fn(t, x, un(x))− f (t, x, un(x))|2 dx ≤ C
∫
Ω

[a21(t, x)+ a22|u|
2
](1 − ϕk(u))2 dx→ 0

k→∞

.

Then, one concludes by using the continuity of the Nemytskii’s operator for a fixed t (cf. Remark 1). �

3. Existence of a solution

The method consists, in a first part, in passing to the limit in an implicit time discretization scheme for a continuous
function f . In order to do it, one would consider an adapted compactness method. Then, in a second part, one would prove
the existence of a solution in the general case.

2 Cf. Remark 1.
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3.1. The continuous case

Assume that f is a continuous function over Q × R and that a1, introduced in (3), is a constant. The idea will be to obtain
the general case by regularization, thanks to Proposition 1 and Remark 2.

For any positive integer N , set h =
T
N and tk = kh for k = 0, 1, . . . ,N . Then, the first result of this section asserts that.

Proposition 2. Let us assume hypotheses (H). Then, for any h ≤
β

M+1 , there exists a unique sequence (uk) in H1
0 (Ω) such that

u0
= u0 and that for any v in H1

0 (Ω),∫
Ω

f

tk+1, x,

uk+1
− uk

h


vdx +

∫
Ω

a

x, uk+1,

uk+1
− uk

h


∇uk+1

∇vdx

+

∫
Ω

b

x, uk+1,

uk+1
− uk+1

h


∇

uk+1
− uk

h
∇vdx = ⟨gk+1, v⟩H−1(Ω),H1

0 (Ω)
, (4)

where gk+1(x) =
 (k+1)h
kh g(t, x)dt.

Proof. Claim 1. Existence of a solution uk+1.
Assume first that f is a bounded function and denote by Ψ the function defined, for any S ∈ H1

0 (Ω), by Ψ (S) = U where
U is the unique solution in H1

0 (Ω) to the variational problem: U ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω),∫
Ω

f

tk+1, x,

S − uk

h


v +

[
a

x, S,

S − uk

h


∇U + b


x, S,

S − uk+1

h


∇

U − uk

h

]
∇vdx = ⟨gk+1, v⟩H−1(Ω),H1

0 (Ω)
.

This problem is well-posed since the hypothesis on h yields a+ b/h ≥ 1, and one is able to prove the existence of a solution
uk+1 thanks to the fixed point theorem of Schauder–Tikhonov (Cf. [47] Chap. 2 p. 30) applied to Ψ .

In the general case, one has a sequence of solutions (uk+1
n ) corresponding with the sequence of bounded functions

fn = min[n,max(−n, f )]. Then, one passes to the limit since (uk+1
n )n is bounded in H1

0 (Ω), since |fn| ≤ |f | and thanks
to Lemma 1.

Claim 2. uniqueness of the solution uk+1.
Let us consider two solutions uk+1 and ûk+1, set w = uk+1

− ûk+1 and v = p(w) where p is a nondecreasing Lipschitz-
continuous function to be made precise later in the proof, with p(0) = 0. Then,

0 =

∫
Ω

[
f

tk+1, x,

uk+1
− uk

h


− f


tk, x,

ûk+1
− uk

h

]
p(w)dx

+

∫
Ω

[
a

x, uk+1,

uk+1
− uk

h


+

1
h
b

x, uk+1,

uk+1
− uk

h

]
p′(w)|∇w|

2dx

+

∫
Ω

[
a

x, uk+1,

uk+1
− uk

h


− a


x, ûk+1,

ûk+1
− uk

h

]
p′(w)∇ûk+1

∇wdx

+

∫
Ω

[
b

x, uk+1,

uk+1
− uk

h


− b


x, ûk+1,

ûk+1
− uk

h

]
p′(w)∇

ûk+1
− uk

h
∇wdx.

Then, h ≤
β

M+1 and H1 yield the existence of a positive constant C such that∫
Ω

[
f

tk+1, x,

uk+1
− uk

h


− f


tk+1, x,

ûk+1
− uk

h

]
p(w)+ p′(w)|∇w|

2

dx

≤ C
∫
Ω

|w|
θa |∇uk+1

||∇w|p′(w)dx + C
∫
Ω

|w|
θb

∇ ûk+1
− u0

h

 |∇w|p′(w)dx.

Since p′
≥ 0, for another positive constant C , one gets that∫
Ω

[
f

tk+1, x,

uk+1
− uk

h


− f


tk+1, x,

ûk+1
− uk

h

]
p(w)+ p′(w)|∇w|

2

dx

≤ C
∫
Ω

p′(w)


|w|

2θa |∇uk+1
|
2
+ |w|

2θb

∇ ûk+1
− u0

h

2

dx.

If, on one hand H2,1 is assumed, one sets p(r) = ln[
e
µ
min[µ,max(r, µe )]], µ > 0.
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Thus, p′(w) =
1
w
1Ωµ(w)whereΩµ = {

µ

e < w < µ}, and∫
Ω

[
f

tk+1, x,

uk+1
− uk

h


− f


tk+1, x,

ûk+1
− uk

h

]
p(w)dx

≤ C
∫
Ωµ


|w|

2θa−1
|∇uk+1

|
2
+ |w|

2θb−1
∇ ûk+1

− u0

h

2

dx.

Passing to the limit with µ to 0+ leads to∫
Ω

[
f

tk+1, x,

uk+1
− uk

h


− f


tk+1, x,

ûk+1
− uk

h

]+

dx ≤ 0.

Since a similar inequality holds for the negative part, one proves that the solution is unique when f (tk, x, .) is an increasing
function.

If, on the other hand H2,2 is assumed, one sets p(r) =
(r−µ)+

r , µ > 0.
Then, p′(w) =

µ

w2 1Ωµ(w)whereΩµ = {µ < w} and∫
Ωµ

|∇w|
2

|w|2
≤ C

∫
Ω


|∇uk+1

|
2
+

∇ ûk+1
− u0

h

2

dx < ∞.

Now, denote by F(r) = ln(1 +
(r−µ)+

µ
) and remark that the inequality of Poincaré yields

∀µ > 0,
∫
Ω

|Fµ(uk+1
−uk+1)|2dx ≤ C .

Passing to the limit with µ to 0+ leads to uk+1
≤ ûk+1 and to the uniqueness as above. �

In order to prove the existence of a solution, let us introduce some notations: for any sequence (vk), let us consider, in
the sequel of this section, two sequences of functions denoted by vh andvh such that

vh =

N−1−
k=0

uk+11[tk,tk+1[ and vh =

N−1−
k=0

[
uk+1

− uk

h
(t − tk)+ uk

]
1[tk,tk+1[.

In particular, f h(t, x, u) =
∑N−1

k=0 f (tk+1, x, u)1[tk,tk+1[ converges to f uniformly inQ ×K for any compact K ⊂ R and, for t a.e.
in ]0, T [, f h(t, ., .) converges to f (t, ., .) in C(Ω×K). Moreover, gh

=
∑N−1

k=0 gk+11[tk,tk+1[ converges to g in L2(0, T ,H−1(Ω))

and, for t a.e. in ]0, T [, one has that gh(t) converges to g(t) in H−1(Ω). Thus, the following a priori estimates hold:

Lemma 2. If h < min[
β2

8M2T
,

β

M+1 ], then

1. (uh) is bounded in L∞(0, T ;H1
0 (Ω)) and (uh) in H1(0, T ;H1

0 (Ω)).
2. ∃C > 0, ∀t ∈ [0, T [, ‖uh(t)− uh(t)‖H1

0 (Ω)
≤ C

√
h.

3. t a.e. in ]0, T [, ∃C(t) > 0, ‖∂tuh(t)‖H1
0 (Ω)

≤ C(t).

Proof. Let us consider the test-function v =
uk+1

−uk
h in (4). Then, hypotheses (H) lead to (CP denoting the constant of

Poincaré):

β

uk+1
− uk

h

2
H1
0 (Ω)

≤ M‖uk+1
‖H1

0 (Ω)

uk+1
− uk

h


H1
0 (Ω)

+

[
1 + C2

P ‖gk+1
‖H−1(Ω) + CPa1


meas(Ω)

] uk+1
− uk

h


H1
0 (Ω)

.

Writing, ∇uk+1
= ∇u0 +

∑k
p=0(h∇

up+1
−up
h ), one gets that

β2
uk+1

− uk

h

2
H1
0 (Ω)

≤ 4M2h2


k−

p=0

up+1
− up

h


H1
0 (Ω)

2

+ 4M2
‖u0‖

2
H1
0 (Ω)

+ 4(1 + C2
P )‖g

k+1
‖
2
H−1(Ω)

+ 4C2
P a

2
1meas(Ω)

≤ 4M2(k + 1)h2
k−

p=0

up+1
− up

h

2
H1
0 (Ω)

+ 4M2
‖u0‖

2
H1
0 (Ω)

+ 4(1 + C2
P )‖g

k+1
‖
2
H−1(Ω)

+ 4C2
P a

2
1meas(Ω).
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Then, since k ≤ N − 1 and h < β2

8M2T
, one has

β2

h
‖uk+1

− uk
‖
2
H1
0 (Ω)

≤ 8M2Th
k−1−
p=0

1
h
‖up+1

− up
‖
2
H1
0 (Ω)

+ 8M2h‖u0‖
2
H1
0 (Ω)

+ 8(1 + C2
P )h‖g

k+1
‖
2
H−1(Ω)

+ 8hC2
P a

2
1meas(Ω). (5)

By summing over k, this leads us to
N−1−
k=0

1
h
‖uk+1

− uk
‖
2
H1
0 (Ω)

≤
8M2T
β2


N−1−
k=0

k−1−
p=0

‖up+1
− up

‖
2
H1
0 (Ω)

+ ‖u0‖
2
H1
0 (Ω)



+
8(1 + C2

P )

β2
‖gh

‖
2
L2(0,T ,H−1(Ω))

+
8TC2

P a
2
1meas(Ω)
β2

.

Since (gh) is bounded in L2(0, T ,H−1(Ω)), there exists a positive constantC such that
N−1−
k=0

1
h
‖uk+1

− uk
‖
2
H1
0 (Ω)

≤
8M2Th
β2

N−1−
k=0

k−1−
p=0

1
h
‖up+1

− up
‖
2
H1
0 (Ω)

+C
and the discrete Gronwall’s lemma (cf. [48] p. 165) yields

‖∂tuh
‖
2
L2(0,T ,H1

0 (Ω))
=

N−1−
k=0

1
h
‖uk+1

− uk
‖
2
H1
0 (Ω)

≤C exp

8M2T 2

β2


:= C1.

Moreover,

‖uk+1
‖
2
H1
0 (Ω)

≤ 2h2


k−

p=0

up+1
− up

h


H1
0 (Ω)

2

+ 2‖u0‖
2
H1
0 (Ω)

≤ 2(k + 1)h
k−

p=0

1
h

up+1
− up

2
H1
0 (Ω)

+ 2‖u0‖
2
H1
0 (Ω)

≤ 2TC1 + 2‖u0‖
2
H1
0 (Ω)

:= C2
2 .

Thus, thanks to the definitions of uh and uh, one has ‖uh
‖L∞(0,T ,H1

0 (Ω))
≤ C2, ‖uh

‖L∞(0,T ,H1
0 (Ω))

≤ 2C2 := C3 and

‖uh(t)− uh(t)‖H1
0 (Ω)

≤
√
hC1 for any t in [0, T ].

Then, using again (5), one proves that there exists C4 > 0 such that, for any t ∈]tk, tk+1[,

‖∂tuh(t)‖2
H1
0 (Ω)

≤ C4[1 + ‖gh(t)‖2
H−1(Ω)

+ a21meas(Q )],

and the lemma holds since for t ∈]0, T [ a.e., gh(t) converges to g(t) in H−1(Ω). �

Let us prove now the main result of this section.

Theorem 2. There exists a solution to Problem (1) in the sense of Definition 1.

Proof. Using the above notations, for t a.e. in ]0, T [ and any v in H1
0 (Ω), one has that∫

Ω

[f h(t, x, ∂tuh)v + a(x, uh, ∂tuh)∇uh
∇v + b(x, uh, ∂tuh)∇∂tuh

∇v]dx = ⟨gh, v⟩H−1(Ω),H1
0 (Ω)

.

Then, thanks to Lemma 2, there exists u in H1(0, T ;H1
0 (Ω)) and a subsequence denoted in the way, such thatuh ⇀ u in H1(0, T ;H1

0 (Ω)) and ∀t ∈ [0, T ], uh(t), uh(t) ⇀ u(t) in H1
0 (Ω).

Moreover, there exists a measurable set Z ⊂]0, T [ with L(]0, T [\Z) = 0 and, for any t ∈ Z , there exists C = C(t) ≥ 0, such
that ‖∂tuh(t)‖H1

0 (Ω)
≤ C .

Hence, there exist ξ(t) ∈ H1
0 (Ω), w ∈ L2(Ω) and a subsequence denoted by (∂tuht (t)) such that ∂tuht (t) ⇀ ξ(t) in

H1
0 (Ω), ∂tuht (t) → ξ(t) in L2(Ω) and a.e. inΩ and |∂tuht (t)| ≤ w a.e. inΩ .
Thanks to H2, and to Lebesgue’s theorem, for any v ∈ H1

0 (Ω),

a(x, uht (t), ∂tuht (t))∇v → a(x, u(t), ξ(t))∇v in L2(Ω)d,
b(x, uht (t), ∂tuht (t))∇v → b(x, u(t), ξ(t))∇v in L2(Ω)d.
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Moreover, f ht (t, x, ∂tuht (t)) converges to f (t, x, ξ(t)) a.e. inΩ and |f ht (t, x, ∂tuht (t))| ≤ a1 + a2w. Thus, one gets that

f ht (t, x, ∂tuht (t)) → f (t, x, ξ(t)) in L2(Ω). (6)

Thus, passing to the limit, ξ(t) is a solution in H1
0 (Ω) to the variational problem: U ∈ H1

0 (Ω) such that ∀v in H1
0 (Ω),∫

Ω

[f (t, x,U)v + a(x, u(t),U)∇u(t)∇v + b(x, u(t),U)∇U∇v]dx = ⟨g(t), v⟩H−1(Ω),H1
0 (Ω)

. (7)

But, such a solution is unique. Indeed, one has just to adapt the method detailed in the proof of Proposition 2. Therefore,
∂tuh(t) converges weakly in H1

0 (Ω) to ξ(t).
Let us denote by ξ :]0, T [→ H1

0 (Ω), t → ξ(t). It is then aweakly-measurable function, thus ameasurable function since
H1

0 (Ω) is separable (cf. Pettis’s theorem [49]).
Moreover, for any v in H1

0 (Ω) and any t a.e. in ]0, T [,∫
Ω

∇∂tuh(t).∇v dx →

∫
Ω

∇ξ(t).∇v dx and
∫
Ω

∇∂tuh(t).∇v dx
 ≤ ‖∂tuh(t)‖H1

0 (Ω)
‖v‖H1

0 (Ω)
.

Then, thanks to Lemma 1.3 p. 12 of [50], for any α in L2(0, T ),
 T
0


Ω
α(t)∇∂tuh(t).∇v dxdt converges to T

0


Ω
α(t)∇ξ(t).∇v dxdt .

Since (∂tuh) is a bounded sequence in L2(0, T ;H1
0 (Ω)), a density argument leads to the weak convergence in

L2(0, T ;H1
0 (Ω)) of ∂tuh to ξ .

Thus, ∂tu = ξ and there exists a solution. �

3.2. The general case

One proposes now to establish the result of existence of Theorem 2 when the Carathéodory function f satisfies (H). In
order to prove it, one denotes by fn the function fn(t, x, u) =


Q f (s, y, u)ρn(t−s, x−y)dsdywhere (ρn) is the usualmollifier

sequence.
Thanks to the previous section, there exists a sequence of solutions (un)when f is replaced by fn, i.e..

Lemma 3. For any positive integer n, there exists un in H1(0, T ;H1
0 (Ω)) such that for t ∈]0, T [ a.e. and any v in H1

0 (Ω),∫
Ω

[fn(t, x, ∂tun)v + a(x, un, ∂tun)∇un∇v + b(x, un, ∂tun)∇∂tun∇v]dx = ⟨g, v⟩H−1(Ω),H1
0 (Ω)

with un(0, ·) = u0.
Moreover, the following estimates hold:

1. (un) is bounded in H1(0, T ;H1
0 (Ω)).

2. t a.e. in ]0, T [, ∃C(t) > 0, ‖∂tun(t)‖H1
0 (Ω)

≤ C(t).

Proof. Let us test the above equation with ∂tun. Thus,∫
Ω

[fn(t, x, ∂tun)− fn(t, x, 0)]∂tun + a(x, un, ∂tun)∇un∇∂tundx +

∫
Ω

b(x, un, ∂tun)|∇∂tun|
2dx

= ⟨g, v⟩H−1(Ω),H1
0 (Ω)

−

∫
Ω

fn(t, x, 0)∂tundx.

Then, ∫
Ω

[
β

2
|∇∂tun|

2
−

M2

2β
|∇un|

2
]
dx ≤ ⟨g, ∂tun⟩H−1(Ω),H1

0 (Ω)
−

∫
Ω

fn(t, x, 0)∂tundx

and ∫
Ω

|∇∂tun|
2dx ≤

2M2

β2

∫
Ω

[
t
∫ t

0
|∇∂tun|

2ds + |∇u0|
2
]
dx

+
2‖g‖H−1(Ω)

β
‖∂tun‖H1(Ω) +

2‖fn(t, x, 0)‖L2(Ω)

β
‖∂tun‖L2(Ω).

Then, thanks to Remark 2 and Young’s inequality, if one denotes k =
4TM2

β2
,∫ t

0
‖∇∂tun‖

2
L2(Ω)ds ≤ k

∫ t

0

∫ s

0
‖∇∂tun‖

2
L2(Ω)dτds + k‖∇u0‖

2
L2(Ω) +

4‖g‖2
L2(0,T ,H−1(Ω))

β
+

4‖a1‖2
L2(Q )

β
.
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Then, Gronwall’s lemma yields, for t ∈]0, T [ a.e.,∫ t

0
‖∇∂tun‖

2
L2(Ω)ds ≤ C1 =


k‖∇u0‖

2
L2(Ω) +

4‖g‖2
L2(0,T ,H−1(Ω))

β
+

4‖a1‖2
L2(Q )

β


ekT ,

‖∇∂tun‖
2
L2(Ω) ≤ kC1 +

4M2

β2
‖∇u0‖

2
L2(Ω) +

4‖g(t)‖2
H−1(Ω)

β
+

4‖a1(t)‖2
L2(Ω)

β
.

And, one concludes by writing un(t) = u0 +
 t
0 ∂tun(s)ds. �

Proof of Theorem 2. One is then able to carry on with the proof of Theorem 2, as presented in the previous section. The
only difference concerns the assertion (6), but this last point is studied in Lemma 1. �

4. Applications

One proposes in this section to derive some applications. The first one concerns the equation of Barenblatt, i.e.
f (t, x, ∂tu)−1u = g .

Then, one proposes to study the case of a degenerate version of the pseudoparabolic problem, i.e. when b may vanish at
some point.

Finally, two applications are proposed. If f ⊂ R2 is a graph of domain R in the first one, and for the penalization of a
constraint in the second one.

4.0.1. Application to Barenblatt’s equation

Barenblatt’s equation, in a simplified form, is f (∂tu)−1u = g , where f (r) = r if r > 0 and f (r) = αr (α > 0) if r ≤ 0,
for the initial condition u0. One would consider in this section the problem, in H1

0 (Ω):

f (t, x, ∂tu)−1u = g, u(t = 0) = u0, (8)

where g ∈ L2(Q ), u0 ∈ H1
0 (Ω) and f is a function that satisfies the hypotheses (H2), such that the associated Nemystkii’s

operator f̃ is monotone in L2(Q ). Moreover, one assumes that there exists α > 0 such that α|u|2 ≤ f (t, x, u)u for any real u
and (t, x) a.e. in Q .

Then, following Lions [50] Th. 2.1 p. 171, since A = I + f̃ is monotone, bounded and continuous in L2(Q ), with

lim
‖u‖L2(Q )→∞


Q A(u)udxdt
‖u‖L2(Q )

= +∞, one gets that A is surjective on L2(Q ) and that f̃ is maximal monotone.

The aim of this section is then to prove that.

Theorem 3. There exists a solution u ∈ H1(Q )∩L2(0, T ,H1
0 (Ω)) to Problem (8) in the sense: u(0, .) = u0 and∀v ∈ H1

0 (Ω), t ∈

]0, T [ a.e.∫
Ω

f (t, x, ∂tu)v + ∇u∇v dx =

∫
Ω

gv dx.

In order to prove the existence of a solution, let us consider a singular perturbation method by a pseudoparabolic operator.
Thus, for any positive ϵ, one considers the family of solutions uϵ of Problem (1) where a(x, u, ∂tu) = 1 and b(x, u, ∂tu) = ϵ.

Then, by using the test function v = ∂tuϵ , one gets, for any t ,

α

∫
]0,t[×Ω

|∂tuϵ |2 dxdt +
1
2

∫
Ω

|∇uϵ(t)|2 dx + ϵ

∫
]0,t[×Ω

|∇∂tuϵ |2 dx ≤
1
2

∫
Ω

|∇u0|
2 dx +

∫
]0,t[×Ω

g∂tuϵ dxdt.

Thus, the sequence (uϵ) is bounded in H1(Q ) ∩ L∞(0, T ;H1
0 (Ω)), (f̃ (∂tuϵ)) and (∂tuϵ) are bounded sequences in L2(Q ) and

(
√
ϵ∂tuϵ) is bounded in L2(0, T ;H1

0 (Ω)).
Denote by u a weak limit in H1(Q ), and weak-* in L∞(0, T ;H1

0 (Ω)), associated with a subsequence still denoted by (uϵ)
and χ a weak limit in L2(Q ) of (f̃ (∂tuϵ)), for a same sub-sequence.

On one hand, passing to the limit with ϵ leads to:

χ −1u = g or ∂tu −1u = g + ∂tu − χ.

Since g + ∂tu − χ ∈ L2(Q ) and u0 ∈ H1
0 (Ω), the classical energy equality states∫

Q
χ∂tu dxdt +

1
2

∫
Ω

|∇u(T )|2 dx =
1
2

∫
Ω

|∇u0|
2 dx +

∫
Q
g∂tu dxdt.
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On the other hand,∫
Q
f (t, x, ∂tuϵ)∂tuϵ dxdt +

1
2

∫
Ω

|∇uϵ(T )|2 − |∇u0|
2 dx ≤

∫
Q
g∂tuϵ dxdt .

Moreover, uϵ(T ) converges to u(T ) in L2(Ω) and (uϵ(T )) is bounded in H1
0 (Ω). Thus, it converges weakly in H1

0 (Ω) and
passing to the upper limit yields

lim sup
ϵ→0

∫
Q
f (t, x, ∂tuϵ)∂tuϵ dxdt +

1
2

∫
Ω

|∇u(T )|2 dx ≤
1
2

∫
Ω

|∇u0|
2 dx +

∫
Q
g∂tu dxdt.

Therefore, lim sup
ϵ→0


Q f (t, x, ∂tuϵ)∂tuϵ dxdt ≤


Q χ∂tu dxdt and Brézis [51] Prop. 2.5 p. 27 characterizes the limitχ = f̃ (∂tu)

and a solution exists.

4.0.2. On a degenerate version of the pseudoparabolic equation

Let us still assume hypothesis (H), except in H1 where β ≥ 0 is considered. Thus, the problem degenerates in the free set
where b = 0. On the other hand, as usual for degenerate problems, other information have to be given concerning the link
between a and b. So, one assumes that there exist two positive constants C1, C2 and a measurable function c such that

∀(x, u, v) ∈ Ω × R2, C1|a(x, u, v)| ≤ c(v) ≤ C2b(x, u, v).

Then, for technical reasons, one assumes that f (t, x, .) is an increasing function and that

∀(x, u, v) ∈ Rd+2, b(x, u, v) = α(x, u)β(v),
|a[x, u, B−1(v1)] − a[x, u, B−1(v2)]| ≤ θ(|v1 − v2|),

where B(v) =

∫ v

0
β(s)ds and

∫ .

0+

ds
θ2(s)

= +∞,

for an increasing modulus of continuity θ such that θ(0) = 0 (one talks about Osgood’s property). Finally, one sets
g = f (t, x, 0). Note that, in particular, there exists ϵ0 > 0 such that α ≥ ϵ0.

Remark 3. This study is a generalization of the framework proposed by Antontsev et al. in [52] concerning the evolution of
sedimentary basins. In that case, the authors set a(x, u, v) = b(x, u, v) = c(v − E) with c = 0 on R− and f = Id. In their
paper, the problem has to degenerate in order to satisfy implicitly the constraint ∂tu ≥ E where E is a nonnegative constant.

Our aim in this section is then to prove that.

Theorem 4. With the above hypothesis, there exists a solution of Problem (1) in the sense of Definition 1.

Proof. Let us apply the idea of the artificial viscosity method; i.e., for any positive ϵ, one considers the family of solutions
(uϵ) of Problem (1) where bϵ = b+ ϵ replaces b. Such a family exists since bϵ ≥ ϵ > 0 and let us get some a priori estimates
in order to pass to the limits with ϵ to 0+.

Since v =
 ∂tuϵ
0

ds
c(s)+C2ϵ

is a test-function for (2) (with bϵ), one gets that

0 =

∫
Ω

[f (t, x, ∂tuϵ)− f (t, x, 0)]
∫ ∂tuϵ

0

ds
c(s)+ C2ϵ

dx +

∫
Ω

[
a(., uϵ, ∂tuϵ)
c(∂tuϵ)+ C2ϵ

∇uϵ +
bϵ(., uϵ, ∂tuϵ)
c(∂tuϵ)+ C2ϵ

∇∂tuϵ

]
∇∂tuϵdx.

Therefore,

C1

C2
‖∇∂tuϵ‖L2(Ω) ≤ ‖∇uϵ‖L2(Ω) ≤

∫ t

0
∇∂tuϵds


L2(Ω)

+ ‖∇u0‖L2(Ω),

and

‖∇∂tuϵ‖2
L2(Ω) ≤

2C2
2 T

C2
1

∫ t

0
‖∇∂tuϵ‖2

L2(Ω)ds +
2C2

2

C2
1

‖∇u0‖
2
L2(Ω).

Then, the sequence (uϵ) is bounded inW 1,∞(0, T ;H1
0 (Ω)) and the proof detailed in the main section yields the existence of

a solution, as soon as one will have explained the result of uniqueness, in the degenerate case, of the solution ξ(t) in H1
0 (Ω)

to the variational problem: U ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω),∫
Ω

{f (t, x,U)v + a(x, u(t),U)∇u(t)∇v + α(x, u(t))∇B(U)∇v}dx =

∫
Ω

gvdx.
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Let us consider ξ(t) and ˆξ(t) two solutions and set v = pµ[B(ξ(t))− B(ξ(t))], where, for any µ > 0, one denotes by ϵ(µ)
the positive number such that

 µ
ϵ(µ)

dt
θ2(t)

= 1 and pµ(r) =
 µ
max[min(r,µ),ϵ(µ)]

dt
θ2(t)

. Then, one has that∫
Ω

[f (t, x, ξ(t))− f (t, x,ξ(t))]pµ[B(ξ(t))− B(ξ(t))]dx
+

∫
Ω

p′

µ(B(ξ(t))− B(ξ(t)))α(x, u(t))|∇(B(ξ(t))− B(ξ(t)))|2dx
≤

∫
Ω

p′

µ[B(ξ(t))− B(ξ(t))]θ [B(ξ(t))− B(ξ(t))]|∇u(t)||∇[B(ξ(t))− B(ξ(t))]|dx
and ∫

Ω

[f (t, x, ξ(t))− f (t, x,ξ(t))]pµ[B(ξ(t))− B(ξ(t))]dx ≤ C(ϵ0)
∫

{ϵ(µ)<B(ξ(t))−B(ξ(t))<µ}

|∇u(t)|2dx.

By passing to the limit with µ to 0+, one concludes that ξ(t) ≤ ξ(t). Since the same proof asserts ξ(t) ≥ ξ(t) too, the
solution is unique and the same method holds. �

4.0.3. The case of a graph

Let us assume in this section that f depends on the only variable ∂tu and that f ⊂ R2 is a maximal monotone graph such
that f [L2(Q )] ⊂ L2(Q ) in a sense to be clarified. Then, Dom f is R and there exists a nondecreasing map f̄ on R such that
f = ∪

x∈R
[f̄ (x−), f̄ (x+)] ∩ R.

One is then interested in the problem: find u ∈ H1(0, T ;H1
0 (Ω)) such that

g ∈ f (∂tu)− Div[a(x, u, ∂tu)∇u + b(x, u, ∂tu)∇∂tu] in Q ,

in the following sense: there exists f #(∂tu) ∈ f (∂tu) ∩ L2(Q ) such that

g = f #(∂tu)− Div[a(x, u, ∂tu)∇u + b(x, u, ∂tu)∇∂tu] in Q ,

with the Cauchy condition: u(0, ·) = u0 inΩ.
Let us denote by f 0 the principal section of f defined by f 0(x) = projf (x)0 for any x.
One still assumes the hypotheses (H), but, the last part of H2 becomes:

H′

2: f 0[L2(Q )] ⊂ L2(Q ). Moreover, one considers one of the two hypotheses: either H′

2,1: f is injective in the sense
f (x) ∩ f (y) ≠ ∅ ⇒ x = y; or H′

2,2: a, b are Lipschitz-continuous with respect to u, v.
The aim of this section is to prove that.

Theorem 5. There exist u ∈ H1(0, T ,H1
0 (Ω)) and f #(∂tu) ∈ f (∂tu)∩ L2(Q ) such that u(0, .) = u0 and ∀v ∈ H1

0 (Ω), t ∈]0, T [

a.e., ∫
Ω

{f #(∂tu)v + [a(x, u, ∂tu)∇u + b(x, u, ∂tu)∇∂tu]∇v}dx = ⟨g, v⟩H−1(Ω),H1
0 (Ω)

.

Proof. For any λ > 0, one considers the resolvant Jλ = (Id + λf )−1 and fλ =
Id−Jλ
λ

the Yosida approximation of f . fλ is an
increasing Lipschitz-continuous function, therefore, there exists a family uλ of solutions to the pseudoparabolic problems
(1) in the sense of Definition 1, regularized by replacing f by fλ.

With the test-function v = ∂tuλ, one gets, for t a.e., that∫
Ω

[fλ(∂tuλ)− fλ(0)]∂tuλ dx + β

∫
Ω

|∇∂tuλ|2 dx

≤ ‖g‖H−1(Ω)‖∂tuλ‖H1(Ω) + |fλ(0)|meas(Ω)‖∂tuλ‖L2(Ω) + M‖∇uλ‖L2(Ω)‖∇∂tuλ‖L2(Ω)

≤


1 + C2

p ‖g‖H−1(Ω) + Cp|fλ(0)|meas(Ω)+ M
∫ t

0
∇∂tuλds


L2(Ω)

+ M‖∇u0‖L2(Ω)


× ‖∇∂tuλ‖L2(Ω),

where Cp denotes the Poincaré’s constant. Then,∫
Ω

[fλ(∂tuλ)− fλ(0)]∂tuλ dx +
β

2

∫
Ω

|∇∂tuλ|2 dx

≤
2
β

[
(1 + C2

p )‖g‖
2
H−1(Ω)

+ C2
p |f 0(0)|2meas(Ω)+ M2T

∫ t

0
‖∇∂tuλ‖2

L2(Ω)ds + M2
‖∇u0‖

2
L2(Ω)

]
,

and (uλ) is bounded in H1(0, T ;H1
0 (Ω)).
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In order to finish, one has to generalize the proof of Theorem 2 from (7). Let us denote by (∂tuλt (t)) a subsequence that
converges weakly in H1

0 (Ω), strongly in L2(Ω) and a.e. inΩ to a function denoted by ξ(t). Moreover, it can be assume that
(fλt (∂tuλt (t))) converges weakly in L2(Ω) to an element χ(t). Indeed, otherwise there exists a subsequence, denoted in the
same way for convenience, such that (‖fλt (∂tuλt (t))‖L2(Ω)) is an increasing divergent sequence.

Since (∂tuλt (t)) converges in L2(Ω), there exists a subsequence (∂tuλ′
t
(t)) and ϕ ∈ L2(Ω) such that |∂tuλ′

t
(t)| ≤ ϕ a.e. in

Ω . Then, one gets a contradiction since, as f 0 is a nondecreasing function,

|fλ′
t
(∂tuλ′

t
(t))| ≤ |f 0(∂tuλ′

t
(t))| ≤ |f 0(ϕ)| + |f 0(−ϕ)| ∈ L2(Ω).

As, [∂tuλt (t), fλt (∂tuλt (t))] ∈ fλt , one gets that

[∂tuλt (t)− λt fλt (∂tuλt (t)), fλt (∂tuλt (t))] ∈ f .

Since ∂tuλt (t) converges in L2(Ω) to ξ(t) and fλt (∂tuλt (t)) converges weakly to χ(t) in L2(Ω), ∂tuλt (t) − λt fλt (∂tuλt (t))
converges to ξ(t) in L2(Ω) and then


Ω
(∂tuλt (t) − λt fλt (∂tuλt (t)))fλt (∂tuλt (t)) dx converges to


Ω
(ξ(t))χ(t) dx. Since f is

maximal monotone, thanks to Brézis [51] Prop. 2.5 p. 27, one has that χ(t) ∈ f (ξ(t)).
Again, since f is monotone, Hypothesis H2

′ allows us to conclude that ξ(t) is unique and the proof of the existence of a
solution still holds. �

4.0.4. Penalization of a constraint on ∂tu

Assume that f ⊂ R2 is the graph of a maximal monotone operator as in the previous section. Assume that it conserves
the bounded sets of L2(Q ) and consider k1 and k2 such that −∞ ≤ k1 < k2 ≤ +∞ with 0 ∈ [k1, k2].

Then, we are interested in finding a u ∈ H1(0, T ;H1
0 (Ω)) solution to the penalized problem

g ∈ f (∂tu)−1u − Div[b(∂tu)∇∂tu] in Q ,

under the constraint k1 ≤ ∂tu ≤ k2.
The aim of this section is to prove that.

Theorem 6. There exist u ∈ H1(0, T ,H1
0 (Ω))with k1 ≤ ∂tu ≤ k2 a.e. in Q and f #(∂tu) ∈ f (∂tu)∩L2(Q ) such that u(0, .) = u0

and ∀v ∈ H1
0 (Ω) with k1 ≤ v ≤ k2 and t ∈]0, T [ a.e.,∫

Ω

{f #(∂tu)(v − ∂tu)+ [a(x, u, ∂tu)∇u + b(x, u, ∂tu)∇∂tu]∇(v − ∂tu)}dx = ⟨g, v − ∂tu⟩H−1(Ω),H1
0 (Ω)

.

Proof. Set fk1,k2 = f + ∂ I[k1,k2] where ∂ I[k1,k2] denotes the sub-differential of the indicatrice function of [k1, k2]. Set
ψ = ∂ I[k1,k2], ψλ its Yosida approximation and denote by uλ the solution of the problem:

g ∈ (f + ψλ)(∂tuλ)−1uλ − Div[b(∂tuλ)∇∂tuλ] in Q ,

for the Cauchy condition

uλ(0, ·) = u0 dansΩ.

Thanks to the test-function ∂tuλ, one gets the estimate:∫
Ω

[ψλ(∂tuλ)− ψλ(0)]∂tuλ dx +

∫
Ω

[f #(∂tuλ)− f 0(0)]∂tuλ dx +
1
2

d
dt

∫
Ω

|∇uλ|2 dx +
β

2

∫
Ω

|∇∂tuλ|2 dx

≤
2
β

[(1 + C2
p )‖g‖

2
H−1(Ω)

+ C2
p ‖f 0(0)‖2

L2(Ω)].

Since f is monotone, (uλ) is bounded in H1(0, T ;H1
0 (Ω)).

Let us denote by u any limit-point in H1(0, T ;H1
0 (Ω)) for the weak convergence, associated with a subsequence denoted

in the same way. Then, it is possible to assume that f #(∂tuλ) converges weakly in L2(Q ) to a given element χ .
Note moreover that

−1
λ

∫
Q
(k1 − ∂tuλ)+∂tuλ dx +

1
λ

∫
Q
(∂tuλ − k2)+∂tuλ dx ≤ Cte.

Then, since k1 ≤ 0 ≤ k2, one has that∫
Q
(k1 − ∂tuλ)+(k1 − ∂tuλ) dx +

∫
Q
(∂tuλ − k2)+(∂tuλ − k2) dx ≤ Cteλ,

and thus, k1 ≤ ∂tu ≤ k2.
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Fig. 1. Simulation when ϵ = 0.1, 0, 2, 0.5 and 1 respectively.

Moreover, for any v ∈ L2(0, T ;H1
0 (Ω)) such that k1 ≤ v ≤ k2, since ψλ is monotone, one gets that∫

Ω

{f #(∂tuλ)[v − ∂tuλ] + [∇uλ + b(∂tuλ)∇∂tuλ]∇[v − ∂tuλ]} dx

= ⟨g, v − ∂tuλ⟩H−1(Ω),H1
0 (Ω)

−

∫
Ω

[ψλ(∂tuλ)− ψλ(v)][v − ∂tuλ] dx

≥ ⟨g, v − ∂tuλ − E⟩H−1(Ω),H1
0 (Ω)

.

Since b(∂tuλ)∇∂tuλ = ∇B(∂tuλ)where B(x) =
 x
0 b(s)ds,∫

Q
χv dx +

∫
Q

∇u∇v dx +

∫
Q
b(∂tu)∇∂tu∇v dx ≥

∫ T

0
⟨g, v − ∂tu⟩H−1(Ω),H1

0 (Ω)
dt

+ lim sup
λ→0

∫
Q
f #(∂tuλ)[∂tuλ] dx +

1
2

∫
Ω

|∇uλ(T )|2 dx −
1
2

∫
Ω

|∇u0|
2 dx +

∫
Q

∇ ∫ ∂tuλ

0

√
b(s)ds

2 dx


.

Then, the lsc properties for the weak convergence yield∫
Q
χv dx +

∫
Q

∇u∇v dx +

∫
Q
b(∂tu)∇∂tu∇v dx

≥

∫ T

0
⟨g, v − ∂tu⟩H−1(Ω),H1

0 (Ω)
dt + lim sup

λ→0

[∫
Q
f #(∂tuλ)[∂tuλ] dx

]
+

1
2

∫
Ω

|∇u(T )|2 dx −
1
2

∫
Ω

|∇u0|
2 dx +

∫
Q

∇ ∫ ∂tu

0

√
b(s)ds

2 dx.
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Fig. 2. Simulation when ϵ = 0, 0, 5, 1 and 5 respectively and small time.

Thus, ∫
Q
χv dx +

∫
Q

∇u∇[v − ∂tu] dx +

∫
Q
b(∂tu)∇∂tu∇[v − ∂tu] dx

≥

∫ T

0
⟨g, v − ∂tu⟩H−1(Ω),H1

0 (Ω)
dt + lim sup

λ→0

[∫
Q
f #(∂tuλ)∂tuλ dx

]
.

Then, for v = ∂tu, one has that∫
Q
χ∂tu dx ≥ lim sup

λ→0

[∫
Q
f #(∂tuλ)∂tuλ dx

]
.

Since, respectively, f #(∂tuλ) and ∂tuλ converge weakly to χ and ∂tu in L2(Q ), and since f is maximal monotone, Brezis [51]
Prop. 2.5 p. 27 yields χ ∈ f (∂tu) and∫

Q
χ∂tu dx = lim

λ→0

[∫
Q
f #(∂tuλ)∂tuλ dx

]
.

This last assertion allows us to prove the existence of a solution. �

5. Some numerical illustrations

In this section, one proposes two sets of numerical illustrations. The domainΩ is ] − π, π[ and the curves are obtained
by a standard P1-finite element method in space and the time discretization introduced in the above main section.
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Fig. 3. Simulation when ϵ = 0, 0, 5, 1 and 5 respectively and large time.

In the first one, the equation is ∂tu − ∂x(arctan(u)∂xu)− ϵ∂3xxtu = g where ϵ is a constant, u0 = 0 and

g(t, x) =


1 if x ∈

π
4
,
π

2


,

−1 if x ∈


−
π

2
,−
π

4


,

0 else.
Solutions are presented in Fig. 1 when ϵ = 0.1, 0.2, 0.5 and 1. Note that arctan(u) < 0 for negative values of u.
In a second set of curves, the equation is f (∂tu)− ∂2xxu− ϵ∂3xxtu = 0 where the initial condition is a continuous piecewise

affine odd function and f (r) = r/10 if r > 0, f (r) = 10r otherwise. We give in Fig. 2 the simulations for ϵ = 0, 0.5, 1 and
5 for small values of the time t . Then, in Fig. 3, the same configuration is presented to illustrate an asymptotic behavior to 0
when t tends to infinity.

The first remark is that the pseudoparabolic perturbation slows down the evolution of the system and diffuses faster
towards the boundaries of the interval.

A second one is that the initial condition fixes the regularity of the solution. Contrary to the heat equation, one has not a
space-regularization when ϵ > 0. One has even a transport of the singularities of the initial condition, in the sense that, for
any positive t , u(t) ∉ H2(−π, π)when u0 ∉ H2(−π, π).
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