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Abstract. The aim of this work is to consider Lewy—Stampacchia in-
equalities for pseudomonotone elliptic operators in very general situa-
tions. This generalizes the results, and simplifies the proofs, proposed
in the unilateral obstacle case, as well as the one in the bilateral case.
By an ad hoc perturbation of the operator and a penalization of the
constraint, one is able to reduce significantly the usual assumptions on
the data and to consider a pseudomonotone elliptic operator defined on
variable exponent Sobolev spaces.
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1. Introduction

In this paper, we are interested in proving Lewy—Stampacchia (LS) inequal-
ities associated with constraints ¥; < w and/or u < 19, namely,

The right constraint LS inequality

—(A(¥2) +ao(th2) — )~ < A(u) +ao(u) — f,
The left constraint LS inequality

A(u) + ao(u) = f < (A1) +ao(yn) — )T,

in the general framework of a nonlinear Leray—Lions pseudomonotone oper-
ator A, a monotone Nemitsky operator ag and a solution u to the variational
inequality

u€ K, (A(u) 4+ ap(u),v —u) > (f,o—u), YveEK,

where K is a closed convex subset from WO1 P (')(Q) related to the constraints.
We discuss also under which assumptions the two parts of the above Lewy—
Stampacchia inequalities simultaneously hold.
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Lewy and Stampacchia [10] proved the first inequality in the frame of
superharmonic problems; then, many authors have been interested in the
so-called Lewy—Stampacchia inequality associated with obstacle problems.
Without trying to be exhaustive, let us cite the monograph of Rodrigues [16]
and the papers of Mokrane and Murat [11] for pseudo-monotone elliptic prob-
lems, Mokrane and Vallet [13] in the context of Sobolev spaces with variable
exponents, Rodrigues, Sanchén and Urbano [18] for proving the existence and
uniqueness of an entropy solution to the obstacle problem for nonlinear el-
liptic equations with variable growth and L' —data, Pinamonti and Valdinoci
[15] in the framework of Heisenberg group, Servadei and Valdinoci [22] for
nonlocal operators or Gigli and Mosconi [7] concerning an abstract presenta-
tion.

Concerning the bilateral problem, let us cite Mokrane and Murat [12]
where the authors proved the existence of a solution satisfying LS inequality
for a rather general Leray—Lions operator of second order by assuming the
existence of a perturbed problem satisfying a uniqueness property. Let us also
cite Rodrigues and Teymurazyan [19], where the authors proved LS inequality
for the two obstacles problem in abstract form for a T-monotone operator in
the frame of (generalized) Orlicz—Sobolev spaces. To the best of the authors’
knowledge, there do not exist in the literature such general LS inequalities for
pseudomonotone operators, nor generalizations of Mokrane and Murat work
[12] to the case of variable exponent Sobolev spaces W, 7 (')(Q).

In this paper, we propose such results by using a method of penalization,
associated with a suitable perturbation of the operator as proposed e.g. by [9,
p.102] and [3] for sub/super solutions to obstacle quasilinear elliptic problems.
This perturbation is one of the main points of the proof: to make it possible
and to reduce to the minimum the list of assumptions. We discuss also about
additional conditions proposed, e.g., in [12] to derive a result in the general
case.

The paper is organized in the following way: after giving the hypotheses
and the main result (Theorem 2.3) in Sects. 2, 3 is devoted to the proof
of this result. A first step is devoted to the existence of a solution to the
penalized /perturbed problem associated with a parameter ¢; then, some a
priori estimates and passage to the limit with respect to 7 (subsequence of €)
are considered with regular non-negative elements g, and g, , associated with
decompositions of certain elements assumed to be in the order dual. We prove
first the two parts of Lewy—Stampacchia inequality when gi” and g, are still
regular; finally, the proof of Lewy—Stampacchia inequality is extended to the
general case in the frame of unilateral problems. In Sect. 4, we discuss some
additional assumptions to get the two parts of Lewy—Stampacchia inequality
in the frame of bilateral problems simultaneously.

2. Notation, Hypotheses and Main Result

Let d be a natural number and © C R? a bounded domain with a Lipschitz
boundary 9. In the sequel, the exponent p :  — [1,+oo[ is a measurable
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function, and we set p_ = ess igfp and p* = esssup p. We assume also that
Q

p is a log-Holder continuous function ( see, e.g., [4, p. 98]).
Consider the following variable exponent Sobolev spaces LP()(Q) and

T/VO1 P (x)(Q); one can consult [6] for the basic properties and some results
concerning this type of spaces. The truncation nonlinearities are defined, for
positive n and any real z, by T),(z) = min[n, max(—n, z)].

Denote, for given measurable functions (¢;);=12 : & — R, by
Ky, ={ue Wol’p(')(ﬂ) s <wae. inQ},
KY2 ={ue Wol’p(')(ﬂ) cu < gae inQ},
and K (ih1,12) = Ky, N K" = {u € Wl (Q) 1 ¢y <u < dhpace. inQ}.

Assume that:

H; : A is a Leray-Lions pseudomonotone operator of the form
vi— A(v) = —div [a(w,v, Vv)],

which acts from W1P()(Q) into W—1#'()(2), where
Hiia:(z, u,g) € QxR xR a(x, u,g) € R is a Carathéodory
function on  x R4+1,
Hi 2 a is strictly monotone with respect to its last argument:

Ve eQae, ueR, VE,FeRY, ££7= [a(x,u,g)fa(x,u,ﬁ)y(gfﬁ) > 0.

H; 3 : there exist constants & > 0, B> 0and# > 0, a function h in
LY(Q) and a function k in LPO)(Q) and 1 < ¢(z),r(z) < ¢t < p~
two exponents such that, for a.e. € Q, Vu € R, V¢ € R?,

plz) _ [»—Y|U\Q(””) + |}_L(I)|:|, (1)

(2)

s}
&
£
o
oy
Vv

Qi
m

5 T - r(x) S1p(z)—1
lae,u, )| < B[IRG@) + 5 + 18]

Hy: ag is a nonlinear superposition operator acting form LP()(Q) into
its dual L?'()(Q), which is defined by

ap(u) = ao(x,u), (3)

where the function ap : € x R — R is a monotone (non decreasing)
Carathéodory function, i.e.,

Vs € R,z — ag(z, s) is measurable, a.e. x € Q, s+ agp(z, s) is continu-
ous, and a.e. © € Q, Vs € R, Vt € R, (ag(x,s) — ap(z,t))(s —t) > 0.
We also assume that there exist a constant o > 0 and a function kg
in LP0)(Q), q1(2) < p(x) and a function v > 0 such that for a.e. z € Q
and for all s € R one has

[ao(, )| < Bol([o ()] + [s])() 1, (4)
Vg -Vo>0, |Vul#£0 in Q.
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Remark 2.1. The second assumption on ¢; in (4) allows us to use Poincaré’s
inequality in modular form, i.e.,

30, >0, Woe Wi Q) / ()| @dz < cp/ Vo) ) da,
Q Q

(see [1, Th. 1]). Instead, we can also assume that ¢; (z) < p_ without assum-
ing the second condition in (4) used to prove Lemma 3.2.

Hy: fe WP 0(Q), (1h)iz12 : @ — R are measurable functions such
that there exists v* in Wol’p(')(Q) such that ¥ < v* < 1)s.
H, : Define, for all v € WP()(Q), the operator B by B(v) = A(v) +
ap(v) — f and denote the order dual space by

0 = WFO@) - W O@),

Hy, 4 € WHPO(Q), B(¥n) € Vi,
ie, B(y1) =g/ —gr, 9,00 € WO(Q), gf g7 >0.
Hyo @9y € WHPO(Q), B(ys) € Vi
ie., B(y2) =95 =95, 93,95 € W), gf,95 > 0.

Remark 2.2. Of course, Hy and Hy; (i = 1,2) yield ¥y < 0 and %2 > 0 on
9.

Reciprocally, by [4, Prop. 7.1.8 p. 244], assuming Hy ; with ¢; < 0 on 92
yields 9] belonging to K, . Likewise, Hy o with ¥ > 0 on 09 yields —15
belonging to K¥2. Then, assuming 11 and v in W20 (Q) with ¢ < 4y in
Q and 91 < 0 < 1by on IS ensures that v* = ¢ — 15 belongs to K (i1, 1s).

Our aim is to prove the following result and discuss under which as-
sumptions the full Lewy—Stampacchia inequality (8) holds in the general
framework.

Theorem 2.3. Under the above assumptions (Hy)—(Hs), there exists at least
one solution u € K(11,12) which is a solution of the variational inequality

/Q{a(x,u,Vu)V(v—u)—l—ao(aj,u)(v—u) de > (f,v—u),Yv € K(11,12).

()

o Assuming Hy 1 , there exists a solution of (5) such that
B(u) e Vy, and (Bw)* < (B)*. (©)

o Assuming Hy o, there exists a solution of (5) such that
B(u) e Vi, and (B)~ < (B())" )

e If Hy holds true with g and g5 in Wol’p(')(ﬂ)ﬂL“(Q), then there exists
a solution of (5) such that B(u) € V5, ) and
— (A(¥2) +ao(vh2) — )~ < A(u) +ao(u) — f < (A(¥r) +ao(¥1) — )7
(8)
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o If Hy holds true and if there exists a Nemitsky operator j on 0 X R,
satisfying Ha like ag, such that the solution u € K (11,12) to

/ a(z,u, Vu)V(v — u)dx + / [ao(z,u) + j(x,u)](v —u)de > (f,v — u)
Q Q
for allv € K(11,12) is unique, then (8) is satisfied for any solution to

(5)-

3. Proof of Theorem 2.3
We will prove Theorem 2.3 with the following:

e The perturbed operator and some preliminary results.

e Proof of Lewy-Stampacchia inequality when g;” and g, are regular.

e Proof of Lewy Stampacchia inequality in the general case for unilateral
problems.

3.1. The Perturbed Operator and Some Preliminary Results

Denote by a(z,u,&) = a(z,max(¢y, min(u,,)),€) and A is the operator
associated with a.

Remark 3.1. We wish to draw the reader’s attention to the fact that with the
proposed perturbation: a(z,u,¢) = a(z, max(y1, min(u,1s)),£), the opera-
tor is formally monotone and not pseudomonotone any more on the free set
where the constraints are violated.

One will perform the proof in the bilateral case, but the unilateral cases
correspond to ¥ = —o0 or ¥y = +00.

Note that the above assumption H; still holds for a. Indeed,

a(w,u,€) - € > alér® — [5] max(yr, min(u, )| + h(2)l], ()

T r(x _p(z)—
(e, 0,€)| < B[1k()| + [ ma(air, min(u, w25 + 1l

(10)

Since by Assumption Hs, | max (11, min(u,s))|9®) < |u|9®) 4+ |[v*]9®) | one
gets that

() r(z) r(z)
| max (¢, min(u, P2))| 7@ < ful 7@ + o™,
_ _ _ _ r(x)
(1) and (2) are satisfied by replacing h by h+7|v*|9®) and k by k + [v*| 7).

Lemma 3.2. Assume Hy-Hs and Hs. There exist positive constants § and M
such that, for any u,v € Wol’p(')(Q),

/Q&(m,u,Vu)V(u—v)dx—&—/ﬂao(x,u)(u—v)dx—&—M

a + - " '
> S (ully ol ) = [805 [ (90@P@ do 01 [ oo @as]
0 0 Q Q
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Proof. From [13, Lemma 4], there exist positive constants C, ¢ and C; such
that, for any u,v € W, ’p()( Q),

/ a(z,u, Vu)V(u —v)de + C
Q

N
> (@ 0) [ 9o 8 [Jull e, + | = €10 [ 0P
Q 0 0 Q
On the other hand, for any u,v € Wol’p(')(Q), one has
CL()(.’L', u)(u - v) = (G‘O(:C?u) - CLo(l’, U)(u - U) + ao(:m v)(u - U) 2 a()(ZE,’U)(U - U),

since |/ ap(z,v)vdz| < C/ |l§;(x)|‘“(m)dx+0/ lu(z)|% @ dz where C is a

Q Q o
positive constant. Thanks to Young’s inequality and Remark 2.1, one has
[ otz < 05 [ (R 4 @l 45 [ @ as,
Q Q o
< C(;/(|];(:E)|Q1(w) + |U($)|q1($))dx+cp5/ |vu(x)|lh(z)dw
@ "

where C), is the positive constant of modular Poincaré’s inequality. Using
again Young’s inequality, one has

\/ ao(x, v)udz| < 05/(\15(95)\%(@ +\v(x)|q1(x))dx+5/ Va(@)["@de + ',
Q Q Q
where Cs and C’ are positive constants. Therefore,

/Q&(x u, Vu)V(u — v)dz + / o(z,u) (v —v)dz + C

> (@8 / V)P de [u||qlp<>+||u|| ]

—01(5/ \Vo(z) [P da
[ /| NPz 10 [ e )|‘“(m)dx]

- [C’(S/Q(|k(x)|m(x) +|v(m)‘h("c))dx—i—é/g|Vu(x)p(x)dm+0’].

Since k € Lp(')(Q), by using Young’s inequality and with a suitable
choice of 9, there exists a constant M > 0 such that

/ a(z,u, Vu)V(u — v)de + / aop(z,u)(u —v)de + M
Q Q

a + -
> — min (||u||§v(]1,p(.)a ||U||€Vg,p(.>> - M [/Q[(HVU(UC”P(JC) + |v($>|‘11($)] dz.
O

[\)

Now, we consider the penalized problem.
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Theorem 3.3. Assume Hi-Hy and Hs. Then for each ¢ > 0, there exists at
least one ue such that

ue € WeP(Q), (ue — 1)~ € L2(Q),  (ue — o)™ € L2(Q)
- 1 _
Qa(x,uE,Vue)Vvdx-i—/an(m,ue)vdx— E/Q(u6 — 1) vdr (11)

+1/(uﬁ — o) tode = (f,v), Yoe WP (Q)n LA (Q).
€Jo

Moreover, for all v € K(1,12), (ue — 1) (e — v) and (ue — P2) T (ue — v)
are in L' (), and

/Q&(x,ue,VuE)V(ue—v)d:ch/an(x,uE)(uE—v)dz
fl/ﬂ(uefwl)*(uefv)da:Jr%/(uefz/}Q)Jr(uefv)dx

€ Q

= (f,uc —v). (12)

Proof. Note that A is a coercive pseudomonotone operator [13, Rem. 1].
Then, denoting by T,, = max(—n,min(-,n)) the truncation at height n, the
operator

L:ww— —div[a(z,w, Vw)] + ap(x,w) — %Tn(w —1)” + %Tn(w — o)™,

L is well defined from Wol’p(') (Q) in W=12'()(Q), and is a strongly continuous
perturbation of A. For every e > 0, consider the problem

ul € WyP(Q), Ll = f. (13)

The existence of solution for (13) follows from [20, Th. 2.6]. With cosmetic
updating of the proof [11, Th. 6.1], we get (11). The proof of (12) is similar
to the one of [11, Prop. 6.1], and one just needs to verify that

(ue — 1) " (ue —v) € LY(Q) and  (ue — o) (ue — v) € LY(Q).
We know that: Vo € W3 *)(Q), T, (0)*+ (resp. T, (v)~) belongs to W) () N
L?(Q), and T, (v)* (resp. T, (v)~) tends strongly to vt (resp. v~) in
W, " ().

Let v € K(31,12), consider T, (u. — v)~ as test function in (11) and
remark that:

(ue — o) T (ue —v)” =0 a.e. in Q,
1

—= / (ue — 1) Tn(ue —v)~da is bounded independently of n.
€Ja

The monotone convergence theorem then implies that (u, — 1) (ue — v) €
LY(Q) and

1 /Q(ue ) T (e — v) i — —> /Q(ue — 1) (u —v)~dz
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Using T, (ue — v)™ as test function in (11), we remark similarly that:
(ue — 1) Th(ue —v)T =0 ae. inQ,

1
- / (ue — ¥2) T T (uc —v)Tdz is bounded independently of n.
Q

€

Again, by monotone convergence theorem, (u. — 12) " (ue —v) € LY(Q2) and

1 1
- /Q(u€ — ) T (ue —v)tde — —= /Q(u6 —9) T (ue —v)Tda

€ €

_ %/Q(u — ha)* (e — v)da. ]
For all v € K (1, 1), we have
—1/< =) e =)o = 1 [ (e = 0) 7+ (e =) (0 = va)da
/ (e — 1)~ [2de > 0,
(14)

| =
\
A

—¥2) (e —v)do = %/S; (e = 1h2) " 1° + (ue — 1h2) " (1h2 — v)da

> = /| YT?da > 0.

Thanks to Lemma 3.2 and previous calculations, there exists a constant C' > 0
independent of € such that

[ellyree) ) + (e, ue, Vue) | Lo yye < C,
(e = 1) 122y + 1(te = $2) 22y < Ce
Thus, we can extract a subsequence, denoted by 7, such that
Uy —u in Wol’p(')(Q) and a.e. in , (16)
a(x, uy, Vuy) — x  in (LP O Q)% (17)
In view of (15), we get

(15)

u € K (¢, 2). (18)

By (16), the Sobolev embedding theorem and the growth condition (4), we
have )
ao(x,uy) — ag(z,u) in LF O (Q). (19)

Using (14) and passing to the limit in (12), we obtain, for all v € K (¢4, 12),

hmsup/ a(x, un,Vun)Vundx—/XVvdx
Q Q

n
—|—/ ap(z,u)(u—v)dz < (f,u—v). (20)
Q
Using (18) and taking v = u, we get
lim sup/ a(x, uy, Vi, ) Vu,de < / xVudz. (21)
n Q Q
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Since v — A(v) = —div[a(z,v, Vv)] is a pseudomonotone operator, one has
divy = div[a(z,u, Vu)] and the first part of the following result holds.

Proposition 3.4.
/ a(z, uy, Vuy)Vu, de — / a(z,u, Vu)Vudz. (22)
Q Q
Moreover, x = a(x,u, Vu).

Indeed, similarly to the proof of [2, Lemma 1], we get that Vu, — Vu
in measure. Therefore, there exists a subsequence denoted by the same way
such that Vu, — Vu a.e. Using the continuity of @ with respect to its second
and third arguments, we get

a(x, uy, Vu,) — a(z,u, Vu)  ae. in Q;
therefore, x = a(x,u, Vu). Thanks to the previous calculations, we deduce

Proposition 3.5. Assume Hi-Hs hold true. Then there exists at least a solu-
tion u € K (11,12) to the variational inequality

/ a(x,u, Vu)V(v — u)dx—l—/ agp(z,u)(v —u)dx > (f,v —u),Vo € K(¢1,12).
Q Q
Note that the cases corresponding to K, and K¥? are similar by as-

suming formally 19 = +00 or ¥ = —oc0.

3.2. Proof of Lewy—Stampacchia’s Inequality with Regular gi" and g, .
1 1
Define yu;, = ;(Un—%)_ >0, pp = E(u77 —1ho)T > 0. We have (see Theorem
3.3)
uy € L*(Q), e L*(Q).
Take v € C(2) as test function in (11) and € = n, we get, thanks to
Proposition 3.4,
py — i = —div(a(z,u, Vu) + ag(xz,u) — f inWrO@Q).  (23)

In this subsection, we consider the subsequence (u,,), which satisfies the
penalized problem (11). Thanks to the selected test function, we prove the
two parts of Lewy—Stampacchia inequality independently and we get at the

limit the two parts of Lewy-Stampacchia inequality since (u,), converges to
the same limit w.

3.2.1. First Lewy—Stampacchia Inequality. In this subsection, we assume that
0<gf = (B(t))* € Wy (Q) N L(Q). Denote by
1 _
=91 — —(uy —¢1)".
n
Note that (u, — 1)~ € Wol’p(')(ﬂ) since ¢1 < 0 on I, and from Theorem
3.3, (uy — 1)~ € L*(Q). Therefore, z, € Wo""(Q) N L2(Q).
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Lemma 3.6. There exists a constant C, such that for any n,

/ \ (a2, uy, Vuy) = ala, 1, V)] - V(uy — 1)~ |de < Cnllgi 1720

s =01 e < st 2o
Proof. With the admissible test function v = —(u,, — 1)~ in (11), one has
—/Q [&(x, Up, V) — a(z, 1, Vi/}l)]V(un —n) dx
— [ faoGe) = aoli )] = 0) o L [ Gy = 0Pt

—l Uy — *(uy, — Tda
o = ) g =)

—(f + div(a(z, Y1, Vip1)) — ao(x, ¥1), (uy

= (g1 =91 (wy = 1)7) < 20llg{ 1 F20) + 5 /I da.

Since 1 < 1) in ©Q, then (u, — 12) T (u,; — 1)~ = 0 a.e. in Q. Therefore,

1
—EAWWWMW%—%YM=O

Since —(u, —11)” = (uy—¥1)1{y, <y, } and ag is non-decreasing with respect
to its second argument, one has

_/Q lao(z, uy) — ao(x,41)] (uy — 1)~ dz > 0.
Then,

[,y Vitg) = (91, V)| V(g — 1)
{u—11 <0}

—/| — 1) Pz < 2067 [0,

Since a(z, uy, Vuy) = a(x, ¥1, Vuy) in {u, < 11}, one gets that
/‘[&(%Unavun)—&($,¢17V¢1)] : 1/)1 ‘diL‘—F*/ ‘ | dx
)

2
< 277H9f||L2(Q)~

We have fl(u,,) — A(1) + ao(uy) — ao(1) + 2, + %(Un — 1)t =

1
where z, = gfL — —(uy —41)”. Our aim is to prove the strong convergence

of 2z, to 0 in L*(2). Using —z, as test function in (11), one has
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— / [(z(m,un, Vuy) — a(x, 1, V@/}l)]Vz;dz — / [ao(w,un) — ao(x,w1)]z;dx
Q Q

_ 1 _ _ _
+/ | 2z — / (un — o) 2y dz = (g7, —27) < 0.
Q nJo

Denote by B the set {g;" — %[(u77 —1)”] <0} = {2, < 0}. On the one

hand, since u,, < ¢; on B, one has

1 . —
_; /Q(un - 1/J2)+zn dz =0, —/Q [ao(ﬂ:,un) — ao(x,wl)]zn dz > 0.
On the other hand, note that,

— /Q [d(x,un, Vu,) — alz, ¢n, Vz/;l)] Vz, dz
= [ 16 late 1y, Vug) o0, V)]V [gr L, - wlﬂ} da
Q n

~ [ 18 oo s, Vi) a0, V)9 [ = Tl - )] o
since in this situation the integration holds in the set {u, < 1;}. Thus,
[, 61, V) = e, 01, V)| Vg = (g — 1) 7]
> |t b1, Vuy) e, v, V)|V — 1)

—\a 2.1, V) —a<x,w1,w1)\|v9
> (e, v1, Vuy) — (e, v, V)| |Voi |
Thanks to the first estimate of Lemma 3.6,
(2, g, Viug) = ala, 1, V)| Wy = 61)” = 0 in L}(Q).

Then, by assumptions H; ; to H; 3, up to a subsequence denoted in the same
way, one gets that

V(uy — 1) (z) =0 ae. inQ. (24)

Indeed, up to a subsequence denoted in the same way, u, converges to u a.e.
in Q with u > 1 a.e. and

‘ [&(x,uy,, Vu,) —a(x, ¢, le)} -V(uy, —91)7| —0 ae inQ. (25)

Consider z such that the above limit (25) holds.
Thanks to Young’s inequality, there exist > 0 and C' > 0 such that

la(z, 1, Vuy) - V| < C(pt,p_, 8, )|V [P
+837 L (E] + [ " + Vg |)
with suitable choice of J, one gets -
@@, 01, Vuy) - Vir| < C0* poy 1,0, Vi k. B) + 5[V .
Since  — a(z, 1, Vuy) - V(uy — 1)~
> [0, = 3119 — || = a(z, 61, Vi) - Voo | L, <y
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then —a(z, Uy, Vun) : V(Un —1)”
Q -
2 {g‘vun‘p(ib) - C(p+7p—a T, wla th ka h7 ﬁ):| 1{u,,<’¢)1}'
We have |a(z, 11, Vipr) - V(uy — 1) 7|
- r(z) p(z)—1
< B[I|+ et 79 + 199l [Vl + 199 L, <)
Thanks to Young’s inequality, there exist § > 0 and C' > 0 such that
|d(x, wla le) ' v(u”] - ¢1)_|
_ - r(a) p(z)
< [Cw* o8, B) [l + 33 + s

46 (190, + 991" 1y
With suitable choice of §, one gets
|a(z, b1, Vibi) - V(uy — 1) 7|
< [C0* posmvn, Ve, B, B) + GV P L, <y
Therefore, ( — [, ty, Vuuy) — a(z, vy, vw]) SV (uy — 1)~

= {%|vun‘p(x) - C(p+>p7’ T, ¢1’ Vl/m k7 h’ ﬁ)] 1{“n<¢1}'
Using (25), one gets that (Vuyl{y, <y,})y is a bounded sequence in R?. Thus,
(V(uy, — 1)~ (2)), is a bounded sequence in R

Since V(u, — 1) (v) = =V (uy; — 1) (2)1{y, <y} (7), it converges to 0
if u(z) > 11 (z). Else, at the limit, one has that u(xz) = ¢ ().

If one assumes that V(u,—11)~ () is not converging to 0, then there ex-
ists a subsequence 1’ (depending on z) such that ||V (u,, — 1)~ (z)|| > >0
for a positive 4. Then, necessarily —V(u,y — ¥1)” (z) = V(u,y — ¢)(2) and,
since it is a bounded sequence in R%, there exists E € R? and a new subse-
quence still labeled 7" such that Vu,(z) converges to E, with the additional
information: ||€ — Vb1 (z)|| > & > 0. Therefore, since £ # Viy (z)

[,y (2), Vi (2) = i, ¥1(2), Ve (@) V= 1) (2)
= — 8@, w1 (@), Vuy (2)) = ala, v (@), Vo (@) Vg = 1) @),

the last term converges to  — [&(x, U1 (2), &) — alz, ¥y (x), le(x))} (€= Vi

(x)] < 0. But, this is in contradiction with the convergence of the same
sequence to 0 and (24) holds. Note that for x a.e. in §,

[, g (), Vg (2)) = alz, 61 (2), Vi (@) | 1, <)
= [a(@, ¥1@), Vi L, <y (2)) = (e, 01(@), Vi L, <) (@)
and Vu, Ly, <y, ) (2) = Vi1, <4,y (7) converges to 0. Then

[d(x,un, Vuy,) — a(x, ¢, le)} Liu, <y} converges a.e. to0.
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Lemma 3.7. Let (u,) be a bounded sequence in LP®)(Q) and assume moreover
that u,, converges a.e. to u. Then, u, — u in LP(*)(Q).

Indeed, the result is true when p is a constant greater than 1. Then,
(up,) is a bounded sequence in LP-(£2) and

u, —u inLP~ () and inD'(Q).

Since LP(*)(Q) is a reflexive Banach space, there exists a subsequence denoted
by the same way and v € LP(*)(Q) such that

Uy, = v inLP®(Q) and inD'(Q).
The uniqueness of the limit, in D’(Q2), ensures the proof of the lemma.
Since ([a(z, Y1, Viy) ~a(w, 1, V1) | 1u, <p,) is bounded in LF'()(©),
by Lemma 3.7 it converges weakly to 0 in L (*)(2) and

/Ql{g;r_%[(un_q/,l)—]@} d(:m/mVun) —a(x, Y1, Vi) |ng|da: — 0.

As a conclusion, z, converges to 0 in L*(£2). Since z, = g - ) and g} >0,

this implies that
0<py <gf +2,.

Since z, — 0 in L*(Q), ), is bounded in L*(£2), by extracting a subsequence,

there exists a non-negative function p; such that
iy = p' inL*(Q) resp.in D'(Q)and 0 < p' <gf. (26)
But (23) implies that there exists a measure p? such that
py—p? inD'(Q) and p® >0, pt—p’
= —div[a(z,u, Vu)] + ap(z,u) — f.
Since gi € L>°(Q) then p! € L>(Q) and therefore u! belongs to W12 ()(Q)
and £ belongs to W—17"0)(Q). We have proved B(u) € V() and
(B(u)* =p' <gf =(Bv1)*
which implies that B(u) < (B(1))".

Remark 3.8. We can prove the above Lewy—Stampacchia inequality without
proving B(u) € V) as following, 2z, = [ %[(m7 —1)7]

e 1
jZ;r — divia(-, uy, Vuy)] + ao (-, uy) + E(U’VI - ¢2)+ - = gf + 2y
= — div[&('aua vu)} + aO('7u) - f S gi‘r
Since u € K (¢1,12), then a(-,u, Vu) = a(-, u, Vu). Therefore

—divla(,u, V)] + ao (- w) — f < g7
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3.2.2. Second Lewy—Stampacchia Inequality. In this subsection, we assume
that 0 < g5 = (B(12))~ € WaP(Q) N ().

We just give a sketch of the proof of this second Lewy—Stampacchia
inequality since this will be done similarly to the one proposed in Sect. 3.2.1.
By considering the same subsequence (u,) used in the Sect. 3.2.1, which

satisfies the penalized problem (11), denote by
1 L
ZWZE(%_%) — Y-

Note that (u, — o) € Wol’p(')(Q) since 12 > 0 on 9f, and from Theorem
3.3, (uy — 1) € L*(Q). Therefore z, € Wy ")(Q) N L2(Q).

Lemma 3.9. There exists a constant C, such that for any n,

/‘ [a(x, uy, Vuy) = @z, 2, Vipo)] - V(uy — o) " de < Crllgy [|72q)
Q

1 _
5”(% — ) 113200) < Cnllgz 11720 (27)
Proof. The proof is similar to the one of Lemma 3.6 by using v = (u,, — ¢»2)*
in (11). O
b1 1
We have  A(uy) — A(th2) + ao(uy) — ao(¢2) + 2y — ;(Un —¢1)” = g5

1
where z, = H(u77 — o)t — gy

Our aim is to prove the strong convergence of z; to 0 in L2(Q).
Using 2 as test function in (11), one has

/ (2, upy, Vug) — a(x, b2, Vib)| V! dz + / [ao(x, up) — ao(x,1b2)] 2, da
Q Q
1
+/ |z [Pdx — f/(m7 - wl)_z,';'dat =(—g5,27) <0.
Q nJa
On the one hand, since ¥ < vy and u, > 12 on {z, > 0}, one has (u, —
¥1)” 25 =0 a.e. in Q. Therefore

1

—= / (uy — wl)_zj]'dx = 0.
nJa

Since u, > 2 on {z, > 0} and ap is non decreasing with respect to the last
argument, one has [ag(z,u,) — ao(x,wl)]z;' > 0 a.e. in . Therefore

/ [ao(x, Up) — ao(x,wg)]z;rdx > 0.
Q

On the other hand, note that, B being the set {%[(u77 —1hy) T —gy ] > 0},
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/Q [d(x,un, Vuy,) — a(z, 2, sz)] . Vzgdx
= / 1g [a(x, uy, Vuy,) — a(z, v, Vipa)| V {1[(%7 — )T — 92]} da
@ n

1f5wmmmv%ﬂanw%VMMV[;wMwﬂ+@ﬂda
since in this situation the integration holds in the set {u, > s }. Thus,
o0, V) 02, 902) |9 | 200y~ 02 - 551
> [ Vag) = 0, V) Wl = )
~ [, b2, Vuy) = ale, v, Vea) | Vg5 |
> —[a(a, v, Vuy) — (e, v, Vo) || Vg5 |
Thanks to (27), one gets
{d(l‘,wg, V) — alz, s, V’L/JQ)}V(’U,U — o)t = 0in LY(9).

Similar arguments detailed previously yield,

A 1{%[(un7w2)+792—]>0}‘d(x»"/}2, vun) - CNL(.’E, 1/12a V%) ‘Vg;|dl’ — 0.

+

As a conclusion, z; converges strongly to 0 in L*(Q).

Since z, = u% — g5 and ,u% > 0, this implies that
2 —
0<ps <gy +7,

since z{;‘ — 0in L3(9), u% is bounded in L?(), by extracting a subsequence,

there exists a non-negative function us such that
py = p? inL*(Q) resp. inD'(Q)and 0> —p® > —g;.
By (26), one deduces
pl — p? = —div[a(z,u, Vu)] + ao(z,u) — f.
We know already that B(u) € Vi ) and we can add that
~(Bw)” > ~g5 = ~(B(42)",

which implies that B(u) > —(B(t¢2))~. This completes the proof of full
Lewy—Stampacchia’s inequality (8) in the regular case.

Remark 3.10. Asin Remark 3.8, one can prove Lewy—Stampacchia inequality
without proving B(u) € V;“,(.), following the same type of arguments.
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3.3. Proof of Lewy—Stampacchia Inequalities in the General Case

Let us consider now general data as assumed in Hy. Thanks to [13, Section
3.3], there exist g} and g2 such that:
g € Wol’p(')(Q) NL®(Q), gr>0 gb— g strongly in WP O(Q),
2 eWIPI@NL®(Q), ¢2>0 g¢2—g; stronglyin W17 0O(Q).
(28)

3.3.1. The First Lewy—Stampacchia Inequality. Associated with gl, denote
the following f! by,

fr=A@n) +ao(er) —gb + 97, g1 € WTPOQ), g7 >0. (29

Note that f! € W=22'()(Q) and f} converges strongly to f in W17 ()(Q).
We also define B™ by

Yo e WHPO(Q), B"(v) = A(v) + ao(v) — fL.
Then, B"(¢1) = g} — g; . By Proposition 3.5, there exists u,, in K (11, 12)
such that for all v in K (1)1,2), one has
/ {a(:c,un, Vun,)V(v — up) + ao(z, up) (v — un)] dz > (fl v —u,).
’ (30)
Satisfying (see Sect. 3.2.1)
Blun) € Vi), Blun) < (Blun))* < gb. (31)

Since this solution comes from the above penalization method, and C' in (15)
can be chosen independent of n, one gets that

||un||W01'p(')(Q) + ||a(1:,un, vun)”(Lp'(-)(Q))d <C.
Up to a subsequence denoted similarly,

Up = U N Wol’p(')(Q), strongly in LP()(Q)  and a.e. in©,
ao(z, up) — ag(z,u)  strongly in LP' O)(Q),
a(z, tn, V) — x  weakly in (LP () (Q))4.

Since K (11, 12) is a closed convex subset of Wol’p(') (), one gets u € K ()1, 1)2).
Taking v = w in (30), one has
/ [a(x, Up, Vun)V(u —uy) + aox, up) (v — un)} de > (ffu—u,),
Q
(32)

and passing to the limit, we get

limsup/a(x,un,Vun)Vundmg/XVudas.
Q Q

n

The pseudomonoticity of the operator A(v) = —div[a(x, v, Vv)] yields
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divy = div[a(z, u, Vu)] and
lim/a(x,un,Vun)Vundx:/a(gc,u,Vu)Vudx.
n Ja Q

Arguments already detailed previously yield x = a(x, u, Vu).
Passing to the limit in (30), there exists u € K (¢, 12) such that

/ [a(x,u, Vu)V(v —u) + ap(z,u)(v — u)]dx > (f,v—u), Yo e K(1,12).
Q
Passing to the limit in B(u,) < g, one gets B(u) < g in W12'0)(Q).
Therefore,

e W OQ), k= g — B(u) >0 such that B(u) = g — &,
which implies B(u) € V. Since (B(u,))™ < gL, one has at the limit
B(u)* < g{. Therefore, B(u) € Vyiy and B(u) < (B(u)* < g5

This completes the proof of the first Lewy—Stampacchia inequality (6)
of the main theorem.

3.3.2. The Second Lewy Stampacchia Inequality. Associated with g2, denote
the following f2 by

F2 = A(e) +ao(ihe) — g3 + g2, g5 e W O(Q), gf >0. (33)

Note that f2 € W=12'0)(Q) and f2 converges strongly to f in W=12'0)(Q).
We also define B™ by

Yo e WHO(Q),  B"(v) = A(v) + ao(v) — 7.

Then, B™(¢9) = g;r — g2. By proposition 3.5, there exists u,, € K(11,%2),
such that Vo € K (1, 12)

/ a(z, Up, Vi, ) V(v — uy)de + / ao (@, un) (v — up)de > (fr v —up).
Q Q

Satisfying (see Sect. 3.2.2),
B(un) € p*’(~)7 B(up) > =(B(un))” = —gp.- (34)

By a similar proof to the one of Sect. 3.3.1, one gets that there exists u €
K (11, 1)2) such that

/ a(z,u, Vu)V(v — u)dz +/ ao(z,u)(v —u)dx > (f,v —u), Vv € K(¢1,12).
Q Q

We know already that B(u,) € V;‘,(_). Following Sect. 3.3.1, passing to the
limit in B(u,) > —g2, one gets B(u) > —g5 in W12 ()(Q) and we can add
that

B(u) € Vi), =95 < =(B(w))” < B(uw).
Remark 3.11. e By avoiding assumptions (2.7)—(2.9) of [13], this result is

a significant generalization of Lewy—Stampacchia inequality for pseu-
domonotone operators.
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e Note that in general the solution to the variational inequality is not a
priori unique. So that, satisfying both Lewy—Stampacchia inequalities
simultaneously is still an issue.

4. An Example of Problem Satisfying Both
Lewy-Stampacchia’s Inequalities

The aim of this section is to prove the last statement of the main theo-
rem. For that, following [12], we propose a situation where both Lewy—
Stampacchia inequalities are satisfied. Let j be a nonlinear superposition
operator associated with a Carathéodory function denoted with the same
name on () X R satisfying Hs like ag. One assumes moreover that it is
strictly monotone (A +— j(-,\) increasing). Let U € K(u1,1%2) and note
that A(:) + ao(wi) +3(1) — f = §(U) = g — g7 + () — §(U) € Vi,
(i=1,2).

Then, from Sect. 3, there exist u; and us in K (i1, 1)2) satisfying, for
any v € K (1, z),

/Qa(-,ul7 Vui)V(v —uy) + [ag(ur) + j(ur)](v — uy)de
> (fo-w)+ [ SO - w)de,
@ (35)
/Qa(~,u2, Vug)V(v —ug) + [ag(usz) + j(u2)](v — ug)dx

> (fov—us) + / S0 - up)de,

Q

with the additional information that Bj(u;) — j(U) € V)
one denotes Bj(u) = B(u) + j(u) and

{Bjm) =3(U) < (Bj(u) = §(U)" < (B;(¢r) = 5(U))*,

—(Bj(¥2) = j(U))~ < =(Bj(uz) = j(U))~ < Bj(uz) — j(U).

Assuming furthermore that the solution to (35) is unique (this can be ob-
tained by adapting, e.g., the proof of [12, Prop. 2.2] in the framework of
variable exponent Sobolev spaces), one gets that uy = ug. If moreover U = u
is chosen from the solutions given by Proposition 3.5, it is also a solution to
(35) and u = u3 = us. Consequently, B(u) € Vp*,(.) and

—(B(¥2) +j(¥2) = j(u))™ < B(u) < (B(¥1) +j(¥1) — 5(U))*F.

Since A — j(+, A) is an increasing function, ¢ < u < )9 yields
B() + (1) —j(uw) <giy B2) +j(2) = j(u) > —g5
and B(u) € V., with

— (A(¥2) +ao(¥2) — £)7 < A(u) + ao(u) — f < (A(¥1) +ao(¢r) — )T
(37)

(i = 1,2) where

(36)
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To finish, let us give examples of situations leading to the uniqueness of the
solution. Consider u; and ug, two given solutions to (35), and ps : R — R, a
Lipschitz-continuous, non-decreasing function, such that ps(0) = 0.

Denote by wy = u; — 1ps(us — uz) where ¢ = |[pf|oo-

If uy > us, then 0 < %pg(ul —ug) < up—ug and us < wy < uq; similarly,
if u1 < ug, then vy < wy < us.

Thanks to the chain rule, wy € K (¢1,12), as well as wg = us+ %p(;(ul —
uz). Then, using wy in the first part of (35), wy in the second part of (35),
and adding the corresponding inequalities, one gets that

/ [a(ﬂth Vuy) = a(-, uz, VuQ)]Vpa(ul — uz)
Q
+ [ao(u1) — a(uz) + j(u1) — j(uz2)]ps(ur — uz)dz < 0.
Set ps(r) = min [1, In (%)ﬂ (see, e.g., [21]). Note that ps is compatible with

the assumptions, pj (r) = ;1 {2<r<s} and it converges pointwise to the sign™

function. So, Fatou’s lemma yields

liméinf/g[ao(uﬂ —a(uz) + j(u1) — j(u2)lps(u1 — uz)dz > /Q[j(ul) — j(uz)]*dz.

Concerning the main operator, assume in a first case that a is Lipschitz
continuous in the following sense: if u € WP()(Q),

la(-,t, Vu) — a(, s, V)| < B1(Vu)|t —s|  where §;(Vu) € LF'O)(9).

Thus, /Q (a1, V) — a(- us, Vus)| Vps(an — o)
= /ng(ul — ug) {a(-,ul,Vul) — a(~,u1,Vu2)}V(u1 — uy)dzx
+ /pr;(ul — ug) {a(-,ul,VuQ) —a(-, us, Vuz)}V(ul — ug)dz
> /ng(u1 —uz)[al ur, Vuz) = ol uz, Vua) | W (ur — u)de

> / Pl (w1 — wz)lur — ualy (Vuz)| V(s — uz)lde
Q

Y

7/ 81(Vu2)|V(ur — ug)|da.
<up—us<d

Assume in a second case a Holder-continuous property with a stronger

monotony in the following sense’:

—

[a('7>‘,é) _a’(',>\7€2)](§1 > CO|§1 é‘a(')7
|a('7tzvu)_a('757vu)| ( )‘ _Sle(')

where ¢g >0, o > % > 1 and B2(Vu) € LY O(Q) if u € WHPO(Q).

L Additional assumptions are made on the exponents to make sense to the integrals.
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Thus, / [a(-,ul,Vul) — a(~,u2,Vu2)}Vp5(u1 — ug)dz
Q

> co/ P(ur — u2)|V(ur — u2)|*Vda — co / pi(ur — u2)|V(ur — ug)|*Vda
Q Q

B C/ ph(ur — uz)ur — uz| O O|85(Vuz) | O da
Q

v

_C/ Jur = ua| " OBy (V)| Vda
g<u1*UQ<6
>-c | 1B(Vur)|* O,

g<u1—u2<§

where C' is a positive constant independent of §.
In both situations, Lebesgue theorem yields

liméinf/ [a(~,u1,Vu1) - a(-,ug,VuQ)] Vps(ur —ug)dz >0
Q

and fQ[j(Ul) — j(uz)]*dz = 0.

As j is increasing with respect to its second argument, one gets that
u1 < ugy. Interchanging w; and us, the result of uniqueness holds.

We invite the reader interested in more general situations, like local
continuity assumptions, to consult [12] concerning the bilateral problem and
[5,14] and their references for uniqueness methods.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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