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Abstract

This paper is devoted to the existence and the uniqueness of the entropy solution for a
general scalar conservation law associated with a forced bilateral obstacle condition in a bounded
domain of R

p, p ≥ 1.

The method of penalization is used with a view to obtaining an existence result. How-
ever, the former only gives uniform L∞-estimates and so leads in fact to look for an Entropy
Measure-Valued Solution, according to the specific properties of bounded sequences in L∞. The
uniqueness of this EMVS is proved. Classically, it first ensures the existence of a bounded and
measurable function U entropy solution and then the strong convergence in Lq of approximate
solutions to U.
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§1. Introduction

1.1. Physical Motivations

A.Bensoussan & J.L.Lions[3] have first introduced obstacle problems for first-order hyper-

bolic operators, as part of the study of cost-functions associated with deterministic processes.

Since then, numerous researches have been carried out on this matter. Among such works,

we can quote those of J.I.Diaz & L.Veron[5], using the properties of nonlinear semigroups

of contractions in L1, or L.Barthelemy’s [2] referring to nonlinear subpotential operators.

In [11], F.Mignot & J.P.Puel have developed the method of penalization for linear varia-

tional and quasi-variational inequalities. This very technique is used in [8] for the Dirichlet

problem when it comes to a nonlinear operator related to a unilateral constraint.

This paper deals with the non homogeneous Dirichlet problem for a general scalar con-

servation law associated with a bilateral forced constraint. The physical motivations of such

a study are diverse as soon as one is interested in the evolution of a heterogeneous phase
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through porous media. For example, in the hydrological field, within the context of the re-

search on liquid transfers through the soil, we are interested in the evolution of any effluent

c within the flow of various substances moving in the subsoil. The first simplified modelling

consists in taking into account but one phase saturating the soil, made of two components

without any chemical interactions : water and the component c. Given that the distribution

of temperatures T and the pressure field P of the fluid phase are determined, sufficiently

smooth functions, the transcription of c’s mass conservation law provides the equality ruling

the component c’s mass fraction ωc :

∂tωc −
k(x)

µ(ωc)
~∇ωc.

(

~∇P − ρ (T, ωc)~g
)

= 0. (1.1)

In the latter equation, k(x) denotes the absolute permeability at the point x, µ being

the dynamic viscosity of the fluid phase and ρ (T, ωc) its voluminal mass, defined by the

composition ωc at the temperature T. Lastly, ~g is the gravity acceleration vector. Moreover,

depending on the geological nature of the subsoil, the molecular diffusion-dispersion effects

have been neglected in favor of the transport of effluent ones. Furthermore, ωc must satisfy

the bilateral obstacle condition :

θ1,c (T (t, x) , P (t, x)) ≤ ωc (t, x) ≤ θ2,c (T (t, x), P (t, x)) , (1.2)

where θ1,c (T (t, x) , P (t, x)) and θ2,c (T (t, x) , P (t, x)) are two extreme saturation points at

the temperature T and for the presure P. Indeed, beyond these values, the appearance of a

new phase (liquid or solid) for the same number of components changes the thermodynamical

nature of the considered system and this latter can not be described through the simplified

continuity equation (1.1).

1.2. Mathematical Formulation

Regarding the first stage in the study of the equation (1.1) related to the bilateral con-

straint (1.2) and to a Dirichlet boundary condition, a change of variables by translation

reveals a new unknown as well as a first-order hyperbolic operator including a reaction term

depending on the lower obstacle. So the next operator is considered :

H (t, x, .) : u→ ∂tu+

p
∑

i=1

∂xi
(f (u)Bi (t, x)) + g (t, x, u) ,

where only the dependence on u is taken into consideration in the transport and reaction

terms.

Then, the model problem is the following : given that u0, u
B and θ such that 0 ≤ u0 ≤

θ (0, .) a.e. on Ω, 0 ≤ uB ≤ θ a.e. on ]0, T [× ∂Ω, where Ω is a subdomain of Rp, 1 ≤ p and

0 < T < +∞, find u satisfying the formal free boundary problem (P) :

0 ≤ u ≤ θ in Q = ]0, T [× Ω, (1.3)

H (t, x, u) = 0 in {(t, x) ∈ Q, 0 < u (t, x) < θ (t, x)} , (1.4)

u(t, σ) = uB on a part of Σ = ]0, T [× ∂Ω, u(0, .) = u0 in Ω.

The method of penalization is applied with a view to obtaining an existence result for

the problem (P). Hence, for each value of the parameter η > 0 (intended to tend to zero),
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one considers the weak entropy solution of the penalized problem (P)η, resulting from the

works of C.Bardos, A.Y.LeRoux & J.C.Nedelec[1] : find a bounded function uη with bounded

variations on Q such that

H (t, x, uη) +
1

η
β (t, x, uη) = 0 in Q, (1.5)

uη = uB on a part of Σ, uη (0, ·) = u0 in Ω,

where β (t, x, u) = −u− + (u− θ (t, x))+ . The equality (1.5) characterizes the penalization

of (1.4) and the free boundary problem (P) is regularized by adding a term which becomes

dominating when η goes to 0+.

We look for estimates of uη which are independent from η. The well-known irregularity of

the solutions to nonlinear first-order hyperbolic problems let one think that such estimates

must be searched in the space BV(Q)∩L∞ (Q) of bounded functions with bounded variations

in Q. But since the penalization operator β (·, ·, ·) depends on time and space variables, the

classical methods used (see e.g. [7] or [8]) even permit to estimate the uniform bounds of

uη. So, to pass to the η-limit in the nonlinar terms of H (·, ·, ·) we must precise some specific

properties of bounded sequences in L∞.

1.3. Some Reminders on Bounded Sequences in L
∞

Let O be an open bounded subset of Rp+1 and let (un)n∈N
be a bounded sequence

in L∞ (O) . Since the works of L.Tartar[13], it has been possible to specify the behavior

of the sequence (f (un))n∈N
, for all continuous functions f on R. The proof is based on

the properties of weak-∗ topology on the space of Radon measures. Moreover, it uses the

”disintegration” of a Young measure with respect to the Lebesgue measure on Rp+1. All

those results lead to the next compacity result :

Property 1.1. Let (un)n∈N
be a sequence of L∞ (O) such that

∃M > 0, ∀n ∈ N, ‖un‖∞ ≤M.

Then, there exists a subsequence, still denoted by (un)n∈N
, extracted from (un)n∈N

and

(νw)w∈O a family of probability measures on R with a support in [−M,M ] , such that,

for all bounded Caratheodory functions ψ on O × [−M,M ] , the sequence (ψ (·, un (·)))n∈N

converges in L∞ (O) weak-∗ towards the element :

w →

∫

R

ψ (x, λ) dνw (λ) .

The map ν : w → νw is called “Young measure associated with the sequence (un)n∈N
” and

its “disintegration” with respect to the Lebesgue measure on R is given by the relation

dν (λ,w) = dνw (λ) dw.

Such a result has found its first application in [13] within the context of the approxi-

mation of a first-order quasilinear equation through an artificial viscosity method. In [4],

R.J.Diperna studies the propagation by a scalar conservation law of a Dirac initial datum

and introduces the notion of “admissible” (or entropy) measure-valued solution. In the sense

of this formulation, the Young measure ν related to the sequence of approximate solutions

(uε)ε is an admissible measure-valued solution which is reduced to a Dirac mass at t = 0.
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So, by demonstrating that ν is also a Dirac mass solution, some general considerations prove

that the bounded sequence (uε)ε strongly converges in Lq, 1 ≤ q < +∞, to the point of con-

centration of ν. Namely, it establishes the existence of a bounded and measurable function

u such that dνw = δu(w) a.e. w in O, where δz is the Dirac mass centered on the point z.

This reasonning has especially been applied to the numerical analysis of transport equa-

tions. Indeed, it is well-known that most numerical schemes (e.g. Finite Volume Scheme)

only give an L∞-estimate uniformly with respect to the mesh length ∆x of the approximate

solution u∆x. In order to take the limit when ∆x goes to 0+, we are led to introduce the

notion of measure-valued solution (or entropy process solution[6]).

Initially used in the case of the Cauchy problem, those methods can be adapted to the situ-

ation of a non homogeneous Dirichlet boundary condition, since the notion of measure-valued

solution has been extended to bounded domains of Rp by A.Szepessy[12] and G.Vallet[14].

1.4. Entropy Measure-Valued Solution

On the one hand, in the case of a general first-order quasilinear equation, it is classical to

introduce the notion of an entropy solution. This criterium - which warrants the uniqueness

- selects, through all the weak solutions (i.e. in sense of distributions on Q) the most

physically acceptable one as soon as some discontinuities appear. Moreover, it is a fact that

if the initial datum is bounded, so it is with the solution to this kind of equation, under

some assumptions on the source term; but the introduction of a constraint on the initial

datum does not a priori pass on to the solution (some behavior and stability properties with

respect to the associated control in the case of the Cauchy problem on Rp can be found in

[9]). That is why we need an entropic formulation allowing for this constraint.

On the other hand, one of the major difficulties linked to the notion of measure-valued

solution is to define its behavior on the boundary of the studied field. Given this definition,

we must reformulate the boundary conditions by copying the one that has been provided

by F.Otto in [10], for the most regular case in which a bounded solution u can be found.

For this purpose, we will take advantage of the fact that if an entropy inequality is satisfied

inside an open subset, then it is possible to define some integrals on its boundary, through

a judicious change of variables.

Firstly, let us describe the behavior of a Young measure associated with the sequence

(uη)η>0 inside the open subset Q. To clarify the writing, we note in the rest of this paper :

~F (t, x, u, k) = sign (u− k) [f (u) − f (k)] ~B (t, x) ,

G (t, x, u, v) = sign (u− v)
[

~∇ ·
(

f (v) ~B (t, x)
)

+ g (t, x, u) + ∂tv
]

,

L (t, x, u, k, v) = |u− k|∂tv + ~F (t, x, u, k) · ~∇v −G (t, x, u, k) v.

Thus, according to the definitions given in [9] for the Cauchy problem, we say

Definition 1.1. A Young measure ν is called an entropy measure-valued solution (emvs)

to (1.3) and (1.1) if and only if

Supp
(

dν(t,x)

)

⊂ [0, θ (t, x)] for a.e. (t, x) in Q, (1.6)
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and for all positive functions ξ of H1
0 (Q) , for any real number k of [0, 1] ,

∫

Q×R

L (t, x, λ, kθ (t, x) , ξ) dν(t,x) (λ) dxdt ≥ 0. (1.7)

In order to formulate the initial condition in L1 (Ω) within the context of a measure-valued

solution, one may notice that

Property 1.2 (Initial Condition). Let ν be an emvs to (1.3) and (1.4) . Then, for all

positive functions ζ of L1 (Ω) and all functions w of L∞ (Ω),

lim
t→0+

ess

∫

Ω×R

|λ− w (x) θ (t, x)| ζ dν(t,x) (λ) dx exists.

Proof. As in [14], considering in the entropy relation (1.7) the test-function ξ (t, x) =

ϕ (t) ζ (x) , where ϕ and ζ belong respectively to D+ (0, T ) and D+ (Ω). The inequality

obtained in this way proves that the bounded function

hk,ζ : t→

∫

Ω×R

|λ− kθ| ζ (x) dν(t,x) (λ) dx

has a bounded variation on [0, T ] . So, it is meaningful to consider its essential limit when

t goes to 0+. Moreover, ζ → hk,ζ (t) is a continuous linear map, uniformly with respect

to t. Then, a density argument leads to the existence of this essential limit for all positive

functions ζ of L1 (Ω) . Now, let wm =
m
∑

i=0

kiIBi
be a simple function on Ω where ki belongs

to Q and (Bi)i∈{1,··· ,m} is a Borelian partition of Ω. Then,

∫

Ω×R

|λ− wmθ| ζ dν(t,x) (λ) dx =

m
∑

i=1

∫

Ω×R

|λ− kiθ| IBi
ζdν(t,x) (λ) dx.

Consequently, the essential limit of hk,ζ (t) , when t goes to 0+, exists for all positive func-

tions ζ of L1 (Ω) and for all simple functions w on Ω with values in Q. Lastly, it can be

extended to all functions w of L∞ (Ω) , since w can be considered as an L∞ (Ω)-limit of such

a simple function’s sequence and since, for all w and ŵ of L∞ (Ω) ,
∣

∣hw,ζ (t) − hŵ,ζ (t)
∣

∣ ≤

‖ζθ‖L1(Ω) ‖w − ŵ‖L∞(Ω) , independently from t in [0, T ].

Now, we have to give a sense to the trace of a Young measure ν on Γ. Let us come back to

the idea introduced by A.Szepessy[12] and let us denote Hp is the p-dimensional Hausdorff

measure on Σ.

Definition 1.2. Let ε be a strictly positive real number and let ν be some Young measure

with support in [−M,M ]. We consider the change of coordinates x → (σ, τ) for x in a

neighborhood of Γ :

x = σ − τ ~n (σ) ,

where (σ, τ) belongs to Γ× ]0, ε[. We denote by J (σ, τ) the Jacobian determinant associated

with this change of coordinates.

Then, there exist a sequence (τi)i∈N
in ]0, ε[ which tends to 0+ and a Young measure µ

on Γ, called a Young measure trace on Σ for ν, described by its disintegration form :

dµ (t, σ, λ) = dµν
(t,σ) (λ) dHp,



6 CHIN. ANN. OF MATH. Vol.22 Ser.B

where dµ
µ
(t,σ) is a family of probabilities on R with support in [−M,M ] , such that,

lim
i→+∞

∫

Σ

∫

R

ψ (t, σ, λ) dν(t,x(σ,τi)
) (λ)J (σ, τi) dH

p =

∫

Σ

∫

R

ψ (t, σ, λ) dµ (t, σ, λ)

for all bounded Caratheodory function ψ on Σ × R.

Then, the behaviour of an emvs in the neighborhood of the boundary Γ can be described

through the next statement:

Property 1.3 (boundary condition). Let ν be an emvs to (1.4) and (1.3) and let µ be

a Young measure trace related to ν. Let us denote x̄ = x(σ,τ). Then, for all positive functions

ζ of L1 (Σ) and for all functions w of L∞ (Σ),

lim
τ→0+

ess

∫

Σ×R

~F (t, x̄, λ, w (t, σ) θ (t, x̄)) · ~n ζ dν(t,x̄) (λ) J (σ, τ) dHp

=

∫

Σ×R

~F (t, σ, λ, wθ) · ~n ζdµ (t, σ, λ) .

Proof. The idea is the same as that already developed in the proof of property 1.2: one

considers in the entropy inequality (1.7) the test-function ξ (t, x) = ϕ (τ) ζ (t, σ) , where ϕ

and ζ belong to D+ (0, ε) and D+ (Σ). Then
∫ ε

0

ϕ (τ)

∫

Σ×R

{|λ− kθ (t, x̄)| ∂tζ (t, σ) + ~F (t, x̄, λ, kθ (t, x̄)) · ~∇ζ (t, σ)

− sign (λ− kθ (t, x̄))G (t, x̄, λ, kθ (t, x̄)) ζ (t, σ)} dν(t,x̄) (λ) J (σ, τ) dHpdτ

≥

∫ ε

0

ϕ′ (τ)

∫

Σ×R

~F (t, x̄, λ, kθ (t, x̄)) · ~n ζ (t, σ) dν(t,x̄) (λ) J (σ, τ) dHpdτ.

The same arguments as before lead to the existence of the essential limit, when τ goes to

0+, of the function

hw,ζ (τ) =

∫

Σ×R

~F (t, x̄, λ, wθ (t, x̄)) .~n ζ (t, σ) dν(t,x̄) (λ)J (σ, τ) dHp

for every positive function ζ in L1 (Σ) and for all simple function w on Σ with values in Q.

Moreover, since f is continuous, one has

lim
τ→0+

esshw,ζ (τ) =

∫

Σ×R

~F (t, σ, λ, w (t, σ) θ (t, σ)) .~n ζ (t, σ) dµ (t, σ, λ) .

Let w be an element of L∞ (Σ) and let (wm)m∈N
be a sequence of simple functions with

values in Q that converges a.e. and in L∞ (Σ) to w. Then w and wm are bounded a.e. by

the same constant, independently from m. Let ε be a strictly positive real number. Since

(wm)m∈N
converges uniformly to w on Σ, for m large enough one has

|hw,ζ (τ) − hwm,ζ (τ) | ≤ Cstε ‖ζ‖L1(Σ) ,

where Cst is a constant independent from any parameter (m or τ). Thus, hwm,ζ (τ) converges

to hw,ζ (τ) as m goes to infinity, uniformly with respect to τ. So, the essential limit of

hw,ζ (τ) , when τ tends to 0+, can be extended to all positive functions ζ of L1 (Σ) and to

any function w of L∞ (Σ).

Remark 1.1. A Young measure trace µ corresponding to ν is not unique but the value

of the integral
∫

Σ×R
~F (t, σ, λ, w) .~n (σ) dµ (t, σ, λ) is the same for all Young measure traces

µ associated with the emvs ν and for all w of L∞ (Σ) (see [12]).
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Within the framework of the study of first-order quasilinear conservation laws, it is well-

known that the boundary conditions can be included in the entropy inequality and are

formulated by choosing a particular test-function. Here, we have chosen a mathematical

formulation for (P) by dissociating the behavior of a measure-valued solution ν inside the

open subset Q (via the definition of an emvs) and on its boundary (by introducing a Young

measure trace µ related to ν and by translating F.Otto’s formulation of Dirichet boundary

conditions[10] into the language of measure solutions). Hence we give the following definition.

Definition 1.3. A Young measure ν is called an Entropy Measure-Valued Solution

(EMVS) to (P) if and only if it is an emvs to (1.3) and (1.4) and if the boundary

conditions are fulfilled in the following sense : for all real numbers k of [0, 1] , for all positive

functions ζ of L1 (Σ) and ς of L1 (Ω) , for all Young measure traces µ on Σ related to ν,

−

∫

Σ×R

~F (t, σ, λ, kθ) · ~n ζ dµ (t, σ, λ)

≤

∫

Σ×R

~F
(

t, σ, λ, uB
)

· ~n ζ dµ (t, σ, λ) −

∫

Σ

~F
(

t, σ, kθ, uB
)

· ~n ζ dHp. (1.8)

lim
t→0+

ess

∫

Ω

|λ− u0 (x)| ς dν(t,x) (λ) dx = 0. (1.9)

In paragraph 2, we are going to prove the existence of an EMVS ν to (P) , through the

penalization method. Nonetheless, in order to demonstrate the uniqueness of ν and establish

some sensitivity properties with respect to the initial and the boundary conditions, a global

weak entropy formulation on Q ∪ Σ is necessary. Thus, let us note that the next equivalent

definition holds.

Theorem 1.1. A Young measure ν is an EMVS to (P) if and only if it fulfills the

constraint on the support (1.6) and if for all real numbers k of [0, 1] , for all positive functions

ξ of H1 (Q), for all Young measure trace µ on Σ related to ν, the following relation holds:
∫

Q×R

L (t, x, λ, kθ, ξ) dν(t,x) (λ) dxdt+

∫

Ω

|u0 − kθ (0, ·)| ξ (0, ·) dx

≥ −

∫

Σ×R

~F
(

t, σ, λ, uB
)

· ~n ξ dµ (t, σλ) +

∫

Σ

~F
(

t, σ, kθ, uB
)

· ~n ξ dHp.

(1.10)

Proof. (i) Clearly, if ν is an EMVS to (P), then it is an emvs to (1.3) and (1.4) .

Furthermore, in order to establish the boundary condition (1.8), let us consider ϕ an element

of D+ (0, T ) , ζ a positive function of L1 (Σ) and let φm be the Lipschitzian approximation of

IΩ defined for anm large enough by φm (x̄) = min (mτ, 1) , with x̄ = x(σ,τ) in the coordinates

(σ, τ) introduced in the Definition 1.2. Thus, we choose in the entropy inequality (1.7) the

test-function

ξ (t, x̄) = (1 − φm (x̄))ϕ (t) ζ (σ) .

This leads to consider the next integral :

m

∫ 1/m

0

∫

Σ×R

~F (t, x̄, λ, kθ (t, x̄)) · ~nζ dν(t,x̄) (λ)J (σ, τ) dτdHp,

whose limit, when m tends to infinity, is obtained by referring to Property 1.3.
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The initial condition (1.9) is treated in the same way as in R.Eymard, T.Gallouet &

R.Herbin’s [6] through the one of S.N.Kruskov[7]: let τ be an element of ]0, T [, let ϕm be a

regular approximation of 1 − I]0,τ [. Let ζ be a function of D+ (Ω) and ρp,l be the standard

mollifer sequence (see Section 3, § 3.1). We choose in the entropy inequality (1.10) the

test-function

ξ (t, x) = ζ (x) ρp,l (x− y)ϕm (t) and k = k(y) =

{ u0(y)
θ(0,y) , if θ (0, y) > 0,

0, else.

That way u0 (y) = k (y) θ (0, y) for a.e. y in Ω. The relation (1.9) is obtained by integrating

with respect to the variable y and by taking successively the limit when m and l tend to

infinity.

(ii) Conversely, let ζ be an element of D+

(

Q̄
)

and φ a positive function ofH1
0 (Ω)∩L∞ (Ω) .

For all m of N, we introduce ϕm the Lipschitzian approximation of I]0,T [ given by ϕm (t) =

max (0,min (mt,m (T − t) , 1)). We consider in the entropy inequality (1.7) the test-function

ξ (t, x) = ζ (t, x)φ (x)ϕm (t). Hence we have the next relation:
∫

Q×R

L (t, x, λ, kθ, ζφ)ϕm dν(t,x) (λ) dxdt ≥ −m

∫ 1/m

0

∫

Ω×R

ζφ |λ− kθ| dν(t,x) (λ) dxdt.

Let us denote by Im the right-hand side integral in the previous inequality. Then, there

exists a constant C, independent from m, such that
∣

∣

∣
Im +m

∫ 1/m

0

∫

Ω

ζ (0, x)φ |u0 − kθ (0, x)| dxdt
∣

∣

∣

≤ Cm

∫ 1/m

0

∫

Ω

{

|ζ (0, ·) − ζ (t, ·)| + |θ (0, ·) − θ (t, ·)| +

∫

R

|λ− u0| dν(t,x) (λ)
}

dxdt.

That way, according to the definition of the initial condition (1.9) and to the regularity

of the functions ζ and θwhen m goes to infinity. Thus, for all functions ζ of D+

(

Q̄
)

and all

φ elements of H1
0 (Ω) ∩ L∞ (Ω) ,

∫

Q×R

L (t, x, λ, kθ, ζφ) dν(t,x) (λ) dxdt ≥ −

∫

Ω

ζ (0, x) |u0 − kθ (0, x)|φdx.

Let us now assume that φ is the Lipschitzian approximation of IΩ defined for an m large

enough by φ (x̄) = min (mτ, 1) , with x̄ = x(σ,τ) in the coordinates (σ, τ) introduced in

Definition 1.2. This leads to consider, as previously, the following term:

m

∫ 1/m

0

∫

Σ×R

~F (t, x̄, λ, kθ (t, x̄)) · ~nζ dν(t,x̄) (λ)J (σ, τ) dτdHp,

whose limit, when m tends to infinity, is obtained by referring to Property 1.3.

Finally, for any function ζ of D+

(

Q̄
)

,
∫

Q×R

L (t, x, λ, kθ, ζ) dν(t,x) (λ) dxdt

≥

∫

Σ×R

~F (t, x̄, λ, kθ) .~nζ dµ (t, σ, λ) −

∫

Ω

ζ (0, .) |u0 − kθ (0, .)| dx.

By density, this inequality is still true for all positive functions ζ ofH1 (Q) and to complete

the proof, we only need to refer to boundary conditions (1.8).
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§2. Existence Result

We decide to adapt the concept of measure-valued solution to the situation where the

approximating sequence (uη)η>0 is the sequence of weak entropy solutions of penalized

problems
[

(P)η

]

η>0
. So, with a view to applying Property 1.1, we look for an estimation

of the L∞ (Q)-boundaries of uη, independently from η. Moreover, to ensure that a Young

measure associated with (uη)η>0 satisfies the constraint (1.3), it is necessary to establish

an estimation of the penalized term in (1.5). Both results are obtained by introducing the

viscous problem corresponding to (P)η and by using the convergence properties of viscous

solutions to the weak entropy solution of (P)η . So, in the rest of this paper, we assume:

(i) f (resp. g) is a C2-class function on R (resp. C0-class on Q × R). In addition one

supposes that f (resp. g) is Lipschitzian on R (resp. Lipschitzian with respect to the third

variable, uniformly in (t, x)).

(ii) θ and Bi, i = 1, · · · , p, belong to W 1,+∞ (Q) ; θ ≥ 0 a.e. on Q.

(iii) uB ∈ L∞ (Σ) , 0 ≤ uB ≤ θ in Σ, u0 ∈ L∞ (Ω) , 0 ≤ u0 ≤ θ (0, ·) in Q.

Particularly those hypotheses guarantee the existence of the quantity M (t) defined for

all real numbers t of [0, T ] by

M (t) = ‖u0‖L∞(Ω) e
C1 t +

C2

C1
(eC1 t − 1), (2.1)

where C1 is the sum of the Lipschitz constants of g (t, x, u) and f (u)∂xi
Bi (t, x) for all i of

{1, · · · , p} , with respect to the variable u.

Furthermore C2 = max
[0,T ]×Ω̄

|g (t, x, 0) + f (0) ~∇ · ~B (t, x) |.

Thus, according to the works of C.Bardos, A.Y.LeRoux & J.C.Nedelec[1], we have

Theorem 2.1. For each value of the parameter η > 0, the penalized problem (P)η has a

unique weak entropy uη in BV (Q)∩L∞ (Q). This solution is the Lp (Q) and C ([0, T ] ;Lp (Ω))

-limit, 1 ≤ p < +∞, when ε goes to 0+, of the solutions’ sequence (uε,η)ε>0 of the diffusion

problems
[

(P)ε,η

]

ε>0
defined for each value of ε > 0 through the non homogeneous Dirichlet

problem:

Find uε,η in H1 (Q) ∩ L∞ (Q) , such that

H (t, x, uε,η) +
1

η
βη (t, x, uε,η) = ε∆uε,η a.e. on Q, (2.2)

uε,η = uB
η a.e. on Σ, uε,η (0, .) = u0,η a.e. on Ω,

where uB
η and u0,η are respectively the standard regularisations of uB and u0 by means of

mollifer sequences indexed on the penalization parameter η. Moreover, βη is obtained through

β by changing θ in its spatial regularisation θη.

2.1. The Study of the Penalized Problem

Through an L1-truncature method and by using the monotony of the penalized operator

β (t, x, u) with respect to u, we establish that the solution of (P)ε,η verifies the maximum

principle:

|uε,η (t, x)| ≤M (t) a.e. in Q, (2.3)
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where M (t) is given by (2.1) .

Now we look for an estimation of the penalized term in (2.2) . Again, L1-truncature

arguments are developed by first considering the L2(Q)-scalar product between (E)ε,η and

signλ(−uε,η)ϕ, where ϕ ∈ C2
c,+(Q) and signλ( · ), λ > 0, is the odd approximation of the

function sign(·), defined for all positive real numbers x through signλ (x) = min
(

x
λ , 1

)

.

Let Iλ (u) =
∫ u

0 signλ(τ) dτ . The Green formula leads to

1

η

∫

Q

(−uε,η)signλ(−uε,η)ϕdxdt

= −ε

∫

Q

~∇uε,η · ~∇(signλ(−uε,η)) ϕdxdt− ε

∫

Q

~∇Iλ(−uε,η) · ~∇ϕdxdt

+

∫

Q

Iλ(−uε,η)∂tϕdxdt−

∫

Q

{

g(t, x, uε,η) + f (0) ~∇ · ~B
}

signλ(−uε,η)ϕdxdt

+

∫

Q

{f (uε,η) − f (0)} ~B · ~∇ϕ signλ (−uε,η) dxdt

+

∫

Q

{f (uε,η) − f (0)} ~B · ~∇signλ (−uε,η) ϕdxdt.

Let us examine the right-hand side of this equality: the first term of the first line is

negative (definition of ( · )−), the second and third lines are bounded by a constant Cϕ

which only depends on ϕ (according to (2.3)) and the Sacks lemma shows that the fourth

line tends to 0+ when λ goes to 0+. Then, after integrating by parts the second term of the

first line and passing to the limit with λ, it comes that

1

η

∫

Q

|−uε,η|ϕdxdt ≤ Cϕ + ε

∫

Q

|−uε,η|∆ϕdxdt.

Next we consider the L2 (Q)-scalar product between the diffusion equation (E)ε,η and

sgnλ

(

[uε,η − θη]
+
)

ϕ. The arguments are the same as those developed previously. We

especially use the majorations of the time and space derivatives of θη, independently from

η, obtained by referring to its definition.

Then, there exists a constant Cϕ which only depends on ϕ, such that

1

η

∫

Q

(uε,η − θη)+ϕdxdt ≤ Cϕ + ε

∫

Q

∆θη sign (uε,η − θη)
+
ϕdxdt.

Hence, by adding the two previous estimates, it follows that

1
η

∫

Q

|βε(t, x, uε,η)|ϕdxdt ≤ Cϕ + ε
{

∫

Q

∆θη sign (uε,η − θη)
+
ϕ+ |−uε,η|∆ϕ

}

dxdt,

where Cϕ is a constant which only depends on ϕ.

The convergence properties recalled in Theorem 2.1 ensure, by passing to the limit when

ε goes to 0+, the following property.

Property 2.1. For all strictly positive real numbers η,

‖uη‖L∞(Q) ≤M, (2.4)

∀ϕ ∈ C2
c,+(Q),

1

η
‖βη(t, x, uη)ϕ‖L1(Q) ≤ Cϕ (2.5)
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where M = M (T ) and Cϕ is a constant which only depends on ϕ.

Remark 2.1. Obviously, since uη is the BV (Q)-weak entropy solution of (P)η , it verifies

the entropy inequality, for all real numbers k and for all positive functions ξ of H1
0 (Q) ,

∫

Q

Lη (t, x, uη, k, ξ) dxdt ≥ 0,

where Lη (t, x, u, k, v) = L (t, x, u, k, v) − 1
ηβη (t, x, u) sign (u− k) v.

Besides, it fulfills the equivalent C.Bardos, A.Y.LeRoux & J.C.Nedelec form of the Dirich-

let boundary condition : for all real numbers k and for all L1 (Σ)-positive function ζ,

−

∫

Σ

~F (t, σ, uη, k) · ~n ζ dH
p

≤

∫

Σ

~F
(

t, σ, uη, u
B
η

)

· ~n ζ dHp −

∫

Σ

~F
(

t, σ, k, uB
η

)

· ~n ζ dHp. (2.6)

However, to pass to the limit when η goes to 0+, we must free ourselves from the param-

eter η in Lη, by referring to the monotonicity of βη (t, x, .) , and must consider some non

linerarities continuous with respect to uη. That is why some other specific properties of uη

have to be precised.

Firstly, in order to simply the writing, let us denote for all positive C2 (R)-convex functions

E such that E (0) = E′ (0) = 0,

~FE (t, x, u, k) =

∫ u

k

f ′ (τ) E′ (τ − k) dτ ~B (t, x) ,

G
η
E

(t, x, u, v) = E′ (u− v)
[

g (t, x, u) + ∂tv +
1

η
βη(t, x, u)

]

+
[

∫ u

v

{f ′ (τ) ~B(t, x).~∇v + f (τ) ~∇ · ~B(t, x)}E′′ (τ−k) dτ
]

,

Lη
E

(t, x, u, k, v) = E(u − k)∂tv + ~FE (t, x, u, k) · ~∇v −G
η
E

(t, x, u, k) v.

Then, we have the next result:

Property 2.2. For all real numbers k, for all positive functions ξ of H1
0 (Q), the weak

entropy solution of (P)η fulfills the inequality
∫

Q

Lη
E

(t, x, uη, kθη, ξ) dxdt ≥ 0. (2.7)

Furthermore, uη satisfies the Dirichlet boundary condition in the following sense, for all

positive functions ζ of L1 (Σ) ,

−

∫

Σ

~F (t, σ, uη, kθη) · ~n ζdHp

≤

∫

Σ

~F
(

t, σ, uη, u
B
η

)

· ~n ζdHp −

∫

Σ

~F
(

t, σ, kθη, u
B
η

)

· ~n ζdHp (2.8)

Proof. Let us come back to the viscous problem (P)ε,η related to (P)η . By first taking

into account the convexity of E, we obtain the majoration a.e. on Q,

ε E′ (uε,η − kθη)∆ [uε,η − kθη] ≤ ε∆E (uε,η − kθη) .
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Furthermore, the definition of ~FE (t, x, u, kθ) allows us to turn the transport term into

~∇ ·
(

f (uε,η) ~B (t, x)
)

E′ (uε,η − kθη) = ~∇ ·
(

~FE (t, x, uε,η, kθη)
)

+ k

∫ uε,η

kθη

{

f ′ (τ) ~B(t, x) · ~∇θη + f (τ) ~∇ · ~B(t, x)
}

E′′(τ − kθη) dτ.

Then, by multiplying the diffusion equation (2.2) with E′ (uε,η − kθη), the next relation

holds a.e. on Q:

∂tE (uε,η − kθη) + ~∇ ·
(

~FE (t, x, uε,η, kθη)
)

+ E′ (uε,η − kθη) [g (t, x, uε,η) + k (∂tθη − ε∆θη) +
1

η
βη (t, x, uε,η)]

+ k

∫ uε,η

kθη

{

f ′ (τ) ~B(t, x) · ~∇θη + f (τ) ~∇ · ~B(t, x)
}

E′′(τ − kθη) dτ

≤ ε∆E (uε,η − kθη) .

We obtain the entropy inequality (2.7) by considering the L2 (Q)-scalar product between

the above inequality and a positive test-function ξ element of H1
0 (Q) and through passing

to the limit when ε goes to 0+ (by applying the convergence properties recalled in Theorem

2.1).

With a view to obtaining the boundary condition (2.8), we use the fact that, since uη is a

bounded function of bounded variation on Q, the inequality (2.6) holds for all real numbers

k and for all L1 (Σ)-positive functions ζ. So, we consider a sequence of simple functions

(θη,m)m∈N∗ defined for all m of N∗ by θη,m =
m
∑

i=1

kiIBi
, where ki belongs to R for all i of

{1, · · · ,m} and (Bi)i∈{1,··· ,m} is a Borelian partition of Σ. By rewriting (2.6) with kki and

IBi
ζ respectively instead of k and ζ and by summing on i, we pass to the limit when m

goes to infinity through the Lebesgue dominated convergence theorem, since the sequence

(θη,m)m∈N∗ converges to θη in L1 (Q) and a.e. on Q.

Indeed, by passing to the limit when η tends to 0+, the inequality (2.7) will supply the

entropy inequality (1.7) for a Young measure ν associated with (uη)η>0. However, (2.8)

does not ensure that a Young measure trace on Σ related to ν (in the sense of Definition

1.2) fulfills the boundary condition (1.8) . In fact, since (uη)η>0 is also a bounded sequence

in L∞ (Σ) , the relation (2.8) only gives some information about a Young measure on Σ

corresponding to this sequence. That is why we need the next corollary.

Corollary 2.1. Let uη be the BV (Q)∩L∞ (Q)-weak entropy solution of (P)η . Then for

all real numbers k and for all positive functions ξ of H1 (Q) ,
∫

Q

Lη (t, x, uη, kθη, ξ) dxdt

≥ −

∫

Ω

|u0,η − kθη (0, ·)| ξ (0, ·)dx+

∫

Σ

~F (t, σ, uη, kθη) · ~nξdHp.

Proof. First of all, since the entropy inequality (2.7) is fulfilled for all C2 (R)-convex

function E such that E (0)= E′ (0)=0, then it is still satisfied when E is the term of a

regular sequence approximating the absolute value function. At the limit we obtain for all
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real numbers k and for all functions ξ of H1
0 (Q),

∫

Q

Lη (t, x, uη, kθη, ξ) dxdt ≥ 0.

Now, the demonstration can be exactly developed as that of Theorem 1.1 (ii), but in a

more regular context here because uη is a bounded function with bounded variation on Q, it

has a trace at t = 0 and on Σ. Hence we choose in the previous entropy inequality the test-

function ξ (t, x) = ζ (t, x)φ (x)ϕm (t) , where ζ belongs to D+

(

Q̄
)

, φ is a C2 (Ω)-positive

function with a compact support in Ω and ϕm is the Lipschtzian approximation of I]0,T [

already given by ϕm (t) = max (0,min (mt,m (T − t) , 1)), for all m of N. The definition of

uη’s trace in BV (Q)∩L∞ (Q) at t = 0 permits to pass to the limit when m goes to infinity.

It results in
∫

Q

Lη (t, x, uη, kθη, ζφ) dxdt+

∫

Ω

ζ (0, ·)φ |u0,η − kθη (0, ·)| dx ≥ 0.

Now, for each value of the parameter δ > 0, we introduce the function ρδ element of

C2
(

Ω̄
)

, which verifies the following properties[7]:
{

ρδ ≡ 1 on Γ, ρδ ≡ 0 on {x ∈ Ω, dist (x,Γ) ≥ δ} ,

0 ≤ ρδ ≤ 1 on Ω,
∥

∥

∥

~∇ρδ

∥

∥

∥

L∞(Ω)p
≤ Cst

δ ,

where Cst is a constant independent of δ. Then, by taking φ equal to 1 − ρδ, we have
∫

Q

Lη (t, x, uη, kθη, ζ) (1 − ρδ) dxdt −

∫

Q

~F (t, x, uη, kθη) · ~∇ρδ ζ dxdt

+

∫

Ω

ζ (0, ·) (1 − ρδ) |u0 − kθη (0, ·)| dx ≥ 0.

As uη belongs to BV (Q) ∩ L∞ (Q), we transform the second integral in the above in-

equality through the Green formula. As the sequence (ρδ)δ>0 converges dM-a.e. to 0, where

dM is the bounded Radon measure associated with the distribution ~∇· ~F (t, x, uη, kθη) , then

it is possible to take the δ-limit in the previous inequality to obtain, for all functions ζ of

D+

(

Q̄
)

,
∫

Q

Lη (t, x, uη, kθη, ζ) dxdt ≥

∫

Σ

~F (t, σ, uη, kθη) · ~nζdHp −

∫

Ω

ζ (0, ·) |u0,η − kθη|dx.

To complete the proof, we refer to the density of D
(

Q̄
)

into H1 (Q).

2.2. Existence of an Entropy Measure-Valued Solution

Given that (uη)η>0 is a bounded sequence in L∞ (Q), the reminders of Property 1.1,

the a priori estimates developed in Property 2.1 and the entropy relations established in

Property 2.2 will enable us to specify the behavior of the sequence (uη)η>0 when η goes to

0+. We precisely have

Theorem 2.1. There exists at least an emvs to (1.3) and (1.4) .

Proof. Let k be an element of [0, 1] . As in the regularized entropy inequality (2.7) the

penalized term is negative, then one may take the η-limit by referring to the L∞ (Q) weak-∗

convergence properties. This provides us with the inequality (1.7) by coming back to the

particular choice of Kruskov’s entropy pairs. Moreover, the penalized term’s estimate (2.5)
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ensures that a Young measure ν associated with the sequence (uη)η>0 fulfills the obstacle

condition (1.6) . Finally ν is an emvs to (1.3) and (1.4) in the sense of Definition 1.1.

Let ν be a Young measure related to (uη)η>0 . According to Properties 1.2 and 1.3, since

ν is an emvs to (1.3) and (1.4), one may give a sense to an initial condition in L1 (Ω)

and specify the behavior of ν in the neighborhood of Γ. Thus an entropy relation is given

for ν, through which, by taking suitable test-functions and by following the same kind of

calculuses as those already developed in Properties 1.2 and 1.3, we are able to prove

Theorem 2.2. This emvs ν is an EMVS to the problem (P) .

Proof. We have to check that the boundary conditions (1.8) and (1.9) are satisfied. For

this purpose, we take the η-limit in the inequality established in Corollary 2.1. According

to the reminders of Property 1.1, for all real numbers k of [0, 1] and for all positive functions

ξ of H1 (Q), we have
∫

Q×R

{|λ− kθ| ∂tξ + ~F (t, x, λ, kθ) · ~∇ξ − χk (t, x) ξ} dν(t,x) (λ) dxdt

≥

∫

Σ×R

~F (t, σ, λ, kθ) · ~n ξ dµ̃ (t, σ, λ) −

∫

Ω

|u0 − kθ (0, ·)| ξ (0, ·) dx,

where χk (t, x) is the L∞ (Q) weak-∗ limit of the bounded non continuous function G(t, x, uη,

kθη) and µ̃ is a Young measure on Σ associated with the sequence of uη’s trace on Σ.

Firstly, let ζ be an element of D+ (Ω) and m ∈ N. In the previous inequality we choose

the test-function ξ (t, x) = ζ (x) max (0,min (1 −mt, 1)) . Using the result established in

Property 1.2 allows to take the limit when m goes to infinity. So one has

lim
t→0+

ess

∫

Ω×R

|λ− kθ| ζ dν(t,x) (λ) dx ≤

∫

Ω

|u0 − kθ (0, ·)| ζdx.

Therefore by replacing the real parameter k by the function k∗ (.) defined a.e. on Ω by

k∗ (x) =

{ u0(x)
θ(0,x) , if θ (0, x) 6= 0,

0, else,

as shown in the demonstration of Property 1.2, one proves that the emvs ν satisfies the

initial condition (1.9) .

Secondly, let ζ be an element of D+

(

Q̄
)

and m ∈ N. We consider now the test-function

ξ (t, x̄) = ζ (t, σ)max (0,min (1 −mτ, 1)) with x̄ = x(σ,τ) in the variables (σ, τ) introduced

in Definition 1.2. By taking the limit when m goes to infinity (Property 1.3), we have for

all real numbers k of [0, 1],
∫

Σ×R

~F (t, x̄, λ, kθ) · ~nζdµ̃ (t, σ, λ) ≤

∫

Σ×R

~F (t, x̄, λ, kθ) · ~nζ dµ (t, σ, λ) .

Then, as shown in Properties 1.2 and 1.3, the real parameter k can be replaced by the

function k∗ (·, ·) defined a.e. on Σ by

k∗ (t, σ) =

{

uB(σ)
θ(t,σ) , if θ (t, σ) 6= 0,

0, else.

This leads to the same inequality as before with uB instead of kθ. Now, since uη is the BV -

weak entropy solution (P)η , it fulfills the boundary condition (2.8) established in Property
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2.2. So, by passing to the limit when η goes to infinity and by using the two previous

relations between µ̃ and µ, we prove that the emvs ν verifies the boundary condition (1.8).

§3. Uniqueness of the Entropy Measure-Valued Solution

Now we establish the uniqueness of an EMVS to the problem (P). As has been specified in

the introduction, this uniqueness result first ensures that the family of probability measures
(

ν(t,x)

)

(t,x)∈Q
related to (uη)η>0 has a punctual support. Namely, there exists a bounded

and measurable function u on Q such that, for a.e. (t, x) in Q, ν(t,x) = δu(t,x), where δZ

is the Dirac mass centered on the point Z. The function u thus defined will be called

the Entropy Solution of (P) . Moreover, it ensures that the whole approximating sequence

(uη)η>0 converges to u in Lq (Q) , 1 ≤ q < +∞ and a.e. in Q.

3.1. The Kruskov Relation

The uniqueness proof is classical: it uses that developed by S.N.Kruskov[7] through the

splitting in two of the time and space variables. However, we will remark that the intro-

duction of a forced bilateral obstacle condition gives rise to the choice of an entropy family

depending on (t, x), through the function θ. Without adding many technical difficulties, this

dependence on time and space entails many additional calculuses and leads us to refer to the

notion of an Entropy Process Solution introduced by R.Eymard, T.Gallouet & R.Herbin[6]

through the next statement.

Property 3.1. Let O be an open subset of Rp+1 and let w → νw a Young measure with

support in [−M,M ] . Then, there exists a function π in L∞ (]0, 1[ ×O) such that for all

continuous bounded functions ψ on O× [−M,M ],
∫

R×O

ψ (x, λ) dνw (λ) dx =

∫

]0,1[×O

ψ (x, π (α,w)) dαdx fora.e. w in O.

The demonstration is based on the properties of the generalized inverse of the distribution

function linked to a probability measure. Hence the integration with respect to the measure

dνw is turned into an integration with respect to the Lebesgue measure on ]0, 1[ .

Thus, the fine Properties 1.2, 1.3 and Definition 1.2, given for an emvs to (1.3) and (1.4),

can be expressed by using property 3.1. This leads to the notion of an Entropy Process

Solution to (1.3) and (1.4) . To begin with, we state the next result.

Theorem 3.1. Let us assume that ν and $ are two EMVS to the problem (P) related

respectively to the initial and the boundary conditions u0, u
B and û0, û

B. Then for a.e. t in

]0, T [ ,
∫

R2×Ω

|λ− κ|dν(t,x) (λ) d$(t,x) (κ) dx

≤
(

2M ′
f

∥

∥

∥

~B
∥

∥

∥

∞

∫ t

0

∫

Γ

∣

∣uB − ûB
∣

∣ dHpds+

∫

Ω

|u0 − û0| dx
)

eM ′

gt, (3.1)

where M ′
f and M ′

g are respectively the Lipschitz constant of f and g (with respect to the third

variable, uniformly in (t, x)).
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Proof. Let m be an element of N∗ and let ρm be the standard mollifer sequence in Rm.

For each n of N∗, let us denote by (ρm,n)n∈N the sequence defined by

ρm,n(x) = nmρm(nx).

Lastly, E will stand for the open subset ]0, 1[×Q.

Let us now consider two entropy process solutions π and ω associated respectively with

the EMVS ν and $. We introduce the functions k∗ and k of L∞ (E3),

k(β, s, y) =

{ ω(β,s,y)
θ(s,y) , if θ(s, y) 6= 0,

0 else.
, k∗ (α, t, x) =

{ π(α,t,x)
θ(t,x) , if θ(t, x) 6= 0,

0, else.

In this way, 0 ≤ k ≤ 1 and 0 ≤ k∗ ≤ 1 a.e. on E . Moreover

k(β, s, y)θ(s, y) = ω(β, s, y) and k∗ (α, t, x) θ(t, x) = π(α, t, x) a.e. on E .

Let us consider the function Λ defined on Q×Q through

Λ (t, x, s, y) = ϕ (t, x) ρp,n (x− y) ρ1,n (t− s) ,

where ϕ is an element of D+

(

]0, T [× Ω̄
)

.

In the entropy relation (1.10) satisfied by π one chooses k = k(β, s, y), the test-function

being equal to Λ(·, ·, s, y)θ(s, y). We make sure that it is still possible to integrate with

respect to the Lebesgue measure dβdyds on E . The same reasoning leads us to choose a

test-function equal to Λ(t, x, ·, ·)θ(t, x) and k = k∗ (α, t, x) , in the inequality (1.10) fulfilled

by ω and written in the variables (β, s, y) . Then, we integrate over E with respect to the

measure dαdxdt.

Then, the two expressions obtained above are added up and taking into account the

definition of Λ the partial derivatives in s, t, x and y are developed. It follows that

3
∑

i=1

Ii,n ≥ −I4,n − I5,n + I6,n, with
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I1,n =

∫

E×E

∆̃ (sign, π, ω) {∆̃ (id, π, ω) ∂tϕ−
(

∆̃
(

f ~∇ · ~B, kθ, k∗θ
)

+ ∆̃ (g, π, ω)
)

ϕ

+
(

∆̃
(

f (·) ~B, π, ω
)

− ∆̃
(

f (·) ~B, kθ (t, x) , ω
))

· ~∇ϕ}ρp,nρ1,n dL,

I2,n =

∫

E×E

∆̃ (sign, π, ω) {[π∂sθ(s, y) − ω∂tθ(t, x)]

+
[

f ′ (k∗θ(s, y)) ~B(s, y) · ~∇θ(s, y)π − f ′ (kθ(t, x)) ~B(t, x) · ~∇θ(t, x)ω
]

}ΛdL,

I3,n =

∫

E×E

∆̃ (sign, π, ω) {∆̃
(

f (·) ~B, π, k∗θ (s, y)
)

− ∆̃
(

f (·) ~B, kθ (t, x) , ν
)

} · ~∇ρp,nρ1,nϕdL,

I4,n =

∫

Ω2×]0,1[×]0,T [

|u0 (y) − k∗θ (0, y)| θ (t, x) Λ (t, x, 0, y) dαdxdtdy,

I5,n =

∫

Σ×E

~F
(

t, σ, π̃ (α, t, σ) , uB
)

· ~n θ (s, y)Λ (t, σ, s, y) dαdHp
(t,σ)dyds

+

∫

Σ×E

~F
(

s, τ, ω̃ (β, s, τ) , ûB
)

· ~n θ (t, x) Λ (t, x, s, τ) dβdHp
(s,τ)dxdt,

I6,n =

∫

Σ×E

~F
(

t, σ, k (β, s, y) θ (t, σ) , uB
)

· ~n θ (s, y) Λ (t, σ, s, y) dβdHp
(t,σ)dyds

+

∫

Σ×E

~F
(

s, τ, k∗ (α, t, x) θ (s, τ) , ûB
)

· ~n θ (t, x) Λ (t, x, s, τ) dαdHp
(s,τ)dxdt.

To clarify, we have denoted

∆̃ (f, u, v) = f (t, x, u (t, x)) θ (s, y) − f (s, y, v (s, y)) θ (t, x)

and dL = dαdxdt dβdyds. Moreover, in I5,n the functions π̃ and ω̃ represent the “trace

processes” related respectively to π and ω; namely, the processes corresponding to the

Young measure traces on Σ related to ν and $, in the sense of Definition 1.2.

We seek to calculate the limit of each integral Ii,n, when n goes to infinity. The argu-

mentation focuses on the notion of Lebesgue points for an integrable function and uses the

Lipschitzian properties of the non linearities. Besides, the order of all integrations can be

permuted. First of all, we state

Lemma 3.1. Let u and v be two elements of L∞ (Q) , φ a locally Lipschitzian function

on Q× R and ξ a bounded function on Q. We denote

Θ (t, x, s, y) = ρp,n (x− y) ρ1,n (t− s) ξ (t, x)

and we consider

In =

∫

Q×Q

sign (u (t, x) θ (s, y) − v(s, y)θ(t, x)) ∆̃ (φ, u, v)Θdxdtdyds.

Then, lim
n→+∞

In =
∫

Q
∆(φ) θ ξ dxdt, where, in order to clarify, we set

∆(φ) = sign (u (t, x) − v (t, x)) {φ (t, x, u (t, x)) − φ (t, x, v (t, x))} .
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Proof. We define I (a, b) = [min (a, b) ; max (a, b)] and we factorize

sign (uθ(s, y) − vθ(t, x)) ∆̃ (φ, u, v)

= sign (uθ(s, y) − vθ(t, x)) [φ (t, x, v) − φ (s, y, v)] θ (t, x)

+ sign (uθ(s, y) − vθ(t, x)) [θ(s, y) − θ(t, x)] φ (t, x, v)

+ sign (uθ(s, y) − vθ(t, x)) [φ (t, x, u) − φ (t, x, v)] θ(s, y).

Since φ is locally Lipschitzian on Q × πT and as θ belongs to W 1,+∞(Q), the integrals

relative to the first line and to the second line tend to 0. For the third line l3, whether or not

u (t, x) θ(s, y) is an element of I(v (s, y) θ(t, x); v (t, x) θ(s, y)), one establishes the existence

of a constant C, such that a.e. on Q×Q,

|l3 − θ (s, y)∆ (φ)| ≤ C (|v (s, y) − v (t, x)| + |θ (s, y) − θ (t, x)|) .

Hence, according to the continuity of θ and to the definition of the Lebesgue points of v, In

has got the same limit as
∫

Q×Q

θ (s, y)∆ (φ) ξ (t, x) dxdtdyds.

This limit is calculated by referring to the continuity of θ on Q, which completes the

proof of Lemma 3.1.

Lemma 3.1 is used, u (t, x) and v (s, y) being changed respectively into π(α, t, x) and

ω(β, s, y), for a.e. (α, β) in ]0, 1[2 . Then, substitute φ(·, ·, ·) and ξ (·, ·) in the statement of

Lemma 3.1 with their mathematical expressions in each line of I1,n. Furthermore, according

to the regularity of f (·) ~B and the continuity of θ, it is clear that the integral conming

from the quantities ∆̃
(

f (·) ~B, kθ (t, x) , ω
)

or ∆̃
(

f (·) ~B, π, k∗θ (s, y)
)

tends to 0. The same

remark is valid when f (·) ~B is turned into f (·) ~∇· ~B, which gives us the limit of the integral

arising from ∆̃
(

f (·) ~B, kθ, k∗θ
)

. Hence we have

lim
n→+∞

I1,n =

∫

Q×]0,1[2
(∂tϕ∆(idR)+∆ (f) ~B · ~∇ϕ+∆

(

f (·) ~∇ · ~B − g
)

ϕ)θ dαdβdxdt. (3.2)

For the study of I2,n, let us come back to the demonstration of Lemma 3.1 and assume

that in ∆̃ (φ, u, v) the function θ is turned into its spatial derivative. Then the quantity

∂tθ (s, y)∆ (φ) is subtracted from the third line. We take advantage of the fact that for a.e.

(t0, x0) in Q such that θ (t0, x0) = 0, one has ∂tθ (t0, x0) = 0. That way a.e. on E3 × E

sign (u (t, x) − v (t, x)) ∂tθ (s, y) = sign (u (t, x) θ (s, y) − v (t, x) θ (s, y)) ∂tθ (s, y) ,

and the arguments are now the same as previously. This reasoning being also valid when

∂tθ is changed into ~∇θ, we finally obtain

lim
n→+∞

I2,n =

∫

Q×]0,1[2

(

~B · ~∇θ∆(f ′ (·) idR) + ∂tθ∆(idR)
)

ϕdαdβdxdt. (3.3)

To study the limit of I3,n, we must compensate for the term ~∇ρp,n through an expresssion

like (t− s) ε(t − s) or (y − x) ε̃(y − x), where ε and ε̃ are integrable functions such that

ε (0) = ε̃ (0) = 0. Hence, when the quantity |t− s| or |y − x| is in the order of 1
n , some

estimates in the order of np+1 are given. Then, the limit with respect to n can be calculated
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by referring to the notion of Lebesgue points on Q. So, if h is an integrable function on Q,

in all the Lebesgue points (t, x) of h,

lim
n→+∞

1

n

∫

Q×Q

|h(t, x) − h(s, y)|
∣

∣

∣

~∇ρp,n (x− y)
∣

∣

∣
ρ1,n(t− s) dxdtdyds = 0. (3.4)

Hence, the regularity of f and ~B is used to divide the integrated term in I3,n into the

five vector-valued functions :

~L1 = {f (ω) θ (t, x) − f (k∗θ(s, y)) θ (s, y)}

p
∑

j=1

∫ yj

xj

∂xj
~B (t, λj) dλ,

~L2 = {f (k∗θ (s, y)) θ (s, y) − f (ω) θ (t, x)}

∫ t

s

∂t
~B (τ, x) dτ,

~L3 = {θ (t, x) − θ (s, y)} {f ′ (π) k∗θ (s, y) − f ′ (kθ (t, x)) kθ (t, x)} ~B (t, x) ,

~L4 = {θ (t, x) − θ (s, y)}
{

f (k∗θ (s, y)) ~B (t, x) − f (kθ (t, x)) ~B (s, y)
}

,

~L5 = {θ (t, x) − θ (s, y)}2
(

θ (s, y) (k∗)2 f ′′ (ζ1) + θ (t, x) k2f ′′ (ζ2)
)

~B (t, x)

with

ζ1 = ζπ + (1 − ζ) k∗θ (s, y) , ζ2 = ζ′ω + (1 − ζ′) kθ (t, x) , (ζ′, ζ) ∈ ]0, 1[2 ,

and by denoting for any real number λ,

λk = (y1, · · · , yk−1, λ, xk+1, · · · , xp) .

Firstly, according to the technical point (3.4) and since f is a locally Lipschitzian function

on R, the integral given by ~L1 has got the same limit as that arising from

~L∗
1 = {f (ω (β, s, y)) θ (t, x) − f (π (α, t, x)) θ (s, y)}

p
∑

j=1

∫ yj

xj

∂xj
~B (t, λj) dλ.

The arguments already developed to study the second and the third line of the decom-

position in Lemma 3.1 prove that the integral coming from ~L∗
1 has got the same limit as

∫

E×E

θ (s, y)∆ (f)

p
∑

j=1

∫ yj

xj

∂xj
~B (t, λj) dλ · ~∇ρp,nρ1,nϕdL.

Given that ~∇xρp,n (x− y) = −~∇yρp,n (x− y), an integration by parts is taken. Then there

is no difficulty in passing to the limit with n. So the term given by ~L1 tends to

−

∫

Q×]0,1[2

~∇ · ~B∆(f) θϕ dαdβdxdt.

Similarly, the integral coming from ~L2 goes to 0.

In so far as θ belongs to W 1,+∞ (Q) , we make sure that the integral corresponding to ~L5

tends to 0. Moreover, in order to determine the limit of that given by ~L3, we first remark

that the integrated quantity can also be written as

sign (k∗ − k) {θ (t, x) − θ (s, y)} {f ′ (π) k∗θ (s, y) − f ′ (kθ (t, x)) kθ (t, x)} ~B (t, x) .

By judging whether or not k∗ (α, t, x) is an element of I (k (β, t, x) ; k (β, s, y)) we resort

to the technical result (3.4) so as to establish that the integral arising from ~L3 has got the
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same limit as
∫

E×E

{θ (t, x) − θ (s, y)}∆(f ′ (·) idR) ~B · ~∇ρp,nρ1,nϕdL.

Then, we take an integration by parts with respect to the variable y. These arguments are

used again to study the integral stemming from ~L4.

Thereafter, we get

lim
n→+∞

I3,n =

∫

Q×]0,1[2

(

~∇θ · ~B∆(f − f ′ idR) − θ~∇ · ~B∆(f)
)

ϕdαdβdxdt. (3.5)

Lastly, to complete the proof of the Kruskov relation (3.1) we now just have to focus on

the boundary terms I4,n, I5,n and I6,n.

As to the first one, since ϕ belongs to D
(

]0, T [× Ω̄
)

, for n large enough, the quantity

ϕ (t, x) ρ1,n (t) is equal to 0 for all real numbers t of [0, T ]. So

lim
n→+∞

I4,n = 0. (3.6)

For the other, since θ belongs to C
(

Ω̄
)

,
∫

Q

θ (s, y) ρp,n (σ − y) ρ1,n (t− s) dyds converges to

1
2θ (t, σ) on Σ and

∫

Q

ρp,n (x− τ) ρ1,n (t− s) θ (t, x)ϕ (t, x) dxdt converges to 1
2θ (s, τ)ϕ (s, τ)

on Σ, as n goes to infinity. Hence, the Lebesgue dominated convergence theorem gives

lim
n→+∞

I5,n = 1
2

∫

Σ×]0,1[

(

~F
(

t, σ, π̃, uB
)

+ ~F
(

t, σ, ω̃, uB
)

)

· ~n θϕdαdHp. (3.7)

In order to determine the limit of I6,n, let us come back to the change of variables

introduced in Definition 1.2: ε being a strictly positive real number, for y in the neighborhood

of Γ, we set y = τ − κ~n (τ) , where (τ, κ) belongs to Γ × ]0, ε[ . If we denote by J (τ, κ) the

Jacobian determinant associated with this change of coordinates and ȳ = y(τ,κ), we are led

to transform the first line of I6,n into

I ′6,n =

∫

Σ×]0,1[×Σ×]0,ε[

~F
(

t, σ, k (β, s, ȳ) θ (t, σ) , uB (t, σ)
)

· ~n θ (s, ȳ)

× Λ (t, σ, s, ȳ) dβdHp
(t,σ) J (τ, κ)dHp

(s,τ)dκ.

Let δ be a strictly positive real number. Given the Lusin theorem, there exists a con-

tinuous function ũB on Σ and a Borelian subset K of Σ, with dHp (Σ\K) ≤ δ, such that

uB = ũB a.e. on K.

As f and θ are bounded functions, there exists a constant Cst such that
∣

∣I ′6,n − I ′′6,n

∣

∣ ≤ Cst δ,

where I ′′6,n is deduced from I ′6,n by changing uB into ũB. Furthermore, in so far as ~F (t, σ,

k(β, s, ȳ)θ(t, σ), ũB(t, σ))θ(s, ȳ)ϕ(t, σ) is uniformly continuous on the compact support of ϕ,

I ′′6,n has got the same limit, when n goes to infinity, as

I ′′′6,n =

∫

Σ×]0,1[×Σ×]0,ε[

~F
(

s, ȳ, ω (β, s, ȳ) , ũB (t, ȳ)
)

· ~n θ (s, ȳ)

× Λ (t, σ, s, ȳ) dβdHp
(t,σ) J (τ, κ) dHp

(s,τ)dκ.
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Then, by using a local map method[14] one shows that

lim
n→+∞

I ′′′6,n = 1
2

∫

Σ×]0,1[

~F
(

s, τ, ω̃, ũB
)

· ~n θϕdβdHp
(s,τ),

where ω̃ represents the “trace process” related to ω. Therefore we have
∣

∣

∣
lim

n→+∞
I ′6,n − 1

2

∫

Σ×]0,1[

~F
(

s, τ, ω̃, uB
)

· ~nθϕdβdHp
(s,τ)

∣

∣

∣
≤ Cst δ,

where δ is any positive real number; hence, the limit of the first integral in I6,n. The same

reasoning for the second integral of I6,n then leads to

lim
n→+∞

I6,n = 1
2

∫

Σ×]0,1[

(

~F
(

t, σ, ω̃, uB
)

+ ~F
(

t, σ, π̃, ûB
)

)

.~n θϕdαdHp. (3.8)

Consequently, adding up the limits (3.2) − (3.8) results in
∫

Q×]0,1[2

(

∂t (θϕ) ∆ (idR) + ~B · ~∇ (θ ϕ)∆ (f) − θϕ∆(g)
)

dαdβdxdt

≥ 1
2

∫

Σ×]0,1[

~D(t,σ)

(

π̃, ω̃, uB, ûB
)

· ~n θϕdαdHp

for all functions ϕ of D+

(

]0, T [× Ω̄
)

, where

~D(a,b)

(

φ, ψ, uB, ûB
)

= ~F
(

a, b, φ, ûB
)

− ~F
(

a, b, φ, uB
)

+ ~F
(

a, b, ψ, uB
)

− ~F
(

a, b, ψ, ûB
)

.

By density this inequality is still fulfilled for all functions ϕ such that θϕ is a positive

element ofW 1,1 (Q) , with θ (0, ·)ϕ (0, ·) = θ (T, ·)ϕ (T, ·) = 0. So, with a view to establishing

the Kruskov relation (3.1), one considers the following test-function in the previous inequality

ϕ(t, x) =

{ 1
θ(t,x)ξ (t) , if θ (t, x) > δ,
1
δ ξ (t) , else,

ξ being any element of D+ (0, T ) and δ being a strictly positive real number (δ < ‖θ‖∞).

The next inequality follows

B1,δ +B2,δ ≥ 0,

where, by denoting [0 < θ ≤ δ] = {(t, x) ∈ Q, 0 < θ (t, x) ≤ δ},

B2,δ =
1

δ

∫

[0<θ≤δ]×]0,1[2

(

∂t (θξ)∆ (idR) + ξ ~B · ~∇θ∆(f) − θξ∆(g)
)

dαdβdxdt

+
1

2δ

∫

Σ∩[0<θ≤δ]×]0,1[

~D(t,σ)

(

π̃, ω̃, uB, ûB
)

· ~nθξ dαdHp.

So as to calculate the limit of B2,δ when δ goes to 0+, the following estimates are used

1

δ
|π − ω| ≤ 1 a.e. on [θ ≤ δ] , and

1

δ

∣

∣uB − ûB
∣

∣ ≤ 1 a.e. on Σ ∩ [0 < θ ≤ δ]

and for all real numbers a, b, c, d,

|~D(a,b)

(

c, d, uB, ûB
)

| ≤ 2M ′
f‖ ~B‖∞

∣

∣uB − ûB
∣

∣ . (3.9)

Hence, there exists a constant Cst, such that

|B2,δ| ≤ Cst
(

∫

[0<θ≤δ]

{δ + |∂tθ| +
∣

∣

∣

~∇θ
∣

∣

∣
} dxdt+ dHp (Σ ∩ [0 < θ ≤ δ])

)

.
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That way B2,δ goes to 0 with δ and we use the Lebesgue dominated convergence theorem

to obtain the limit of B1,δ.

Lastly, by resuming a writing through the EMVS ν, $ corresponding to the processes π

and ω, and using the Lipschitz property of g, the inequality (3.9) gives us, for all functions

ξ of D+ (0, T ),

−

∫

Q

ξ′
∫

R2

|λ− κ| dν(t,x) (λ) d$(t,x) (κ) dxdt

≤M ′
g

∫

Q

ξ

∫

R2

|λ− κ| dν(t,x) (λ) d$(t,x) (κ) dxdt +M ′
f‖
~B‖∞

∫

Σ

∣

∣uB − ûB
∣

∣ ξ dHp.

Hence the time function h (·) defined through

h : t→

∫

Ω×R2

|λ− κ|dν(t,x) (λ) d$(t,x) (κ) dx

−M ′
g

∫ t

0

∫

R2

|λ− κ|dν(s,x) (λ) d$(s,x) (κ) dxds

−M ′
f‖
~B‖∞

∫ t

0

∫

Γ

∣

∣uB − ûB
∣

∣ ξ dHp−1ds

is non increasing on [0, T ]. Since it is also a bounded function, it has bounded variations on

[0, T ] . So this function has a trace at t = 0+ which is the trace of the BV-function

t→

∫

Ω×R2

|λ− κ|dν(t,x) (λ) d$(t,x) (κ) dx at t = 0+.

The decomposition
∫

Ω×R2

|λ− κ| dν(t,x) (λ) d$(t,x) (κ) dx

≤

∫

Ω

|u0 − û0| dx+

∫

Ω×R2

|κ− û0| d$(t,x) (κ) dx+

∫

Ω×R2

|λ− u0| dν(t,x) (λ) dx

and the definition (1.9) of the initial condition for ν and $ give, for a.e. t of ]0, T [ ,

h (t) ≤

∫

Ω

|u0 − û0| dx.

Then, the Gronwall lemma leads to the desired relation (3.1), which completes the proof of

Theorem 3.1.

3.2. Conclusion

According to the relation (3.1) established in Theorem 3.1, if ν and $ are two EMVS to

the problem (P) related to the same boundary conditions, then
∫

Ω×R2

|λ− κ|dν(t,x) (λ) d$(t,x) (κ) dx = 0 for a.e. t in ]0, T [ .

Thus, the two probability measures dν(t,x) and d$(t,x) are equal to a Dirac measure

centered on a point noted u (t, x) . Moreover, u is a measurable and bounded function on

Q, since the constraint (1.6) on the supports of dν(t,x) and d$(t,x) is translated into :

0 ≤ u (t, x) ≤ θ (t, x) , for a.e. (t, x) on Q.

Hence, referring to the equivalent definition of an EMVS to (P) given in Theorem 1.1,

we may say that
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Theorem 3.2. The bilateral obstacle problem (P) has a unique Entropy Solution u which

is characterized by the formulation

0 ≤ u (t, x) ≤ θ (t, x) for a.e. (t, x) in Q,

and for all real numbers k of [0, 1] , for all positive functions ξ of H1 (Q), for all Young

measure traces µ on Σ related to δu, the next relation holds :
∫

Q

L (t, x, u, kθ, ξ) dxdt +

∫

Ω

|u0 − kθ (0, ·)| ξ (0, ·)dx

≥ −

∫

Σ×R

~F
(

t, σ, λ, uB
)

· ~n ξ dµ (t, σ, λ) +

∫

Σ

~F
(

t, σ, kθ, uB
)

· ~n ξ dHp.

Furthermore, if u and v are two entropy solutions for (P) corresponding respectively to the

couples of boundary conditions
(

uB, u0

)

and
(

vB, v0
)

, then for a.e. t of ]0, T [ ,
∫

Ω

|u− v| dx ≤
(

2M ′
f‖
~B‖∞

∫ t

0

∫

Γ

|uB − vB |dHp−1ds+

∫

Ω

|u0 − v0| dx
)

eM ′

gt.

To conclude, let us remember that, according to the works of R.J.Diperna[4], u is the

limit in Lq (Q) , 1 ≤ q < +∞, and a.e. on Q, of the whole sequence of penalized solutions

(uη)η>0, when η goes to 0+. The latter property is used in [levi3] to give some behavior and

sensitivity properties of u with respect to θ, in the case of the Cauchy problem in Rp.
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