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Abstract
The aim of this work is to study a stochastic obstacle problem governed by a T -
monotone operator, a random force and a multiplicative stochastic reaction in the
frame of Sobolev spaces. After proving a result of existence and uniqueness of the
variational solution, by using an ad hoc perturbation of the stochastic reaction and a
penalization of the constraint, we prove Lewy–Stampacchia’s inequalities associated
with the problem finally.
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1 Introduction

In this paper, we are interested in proving the existence and uniqueness of a solution
u to some obstacle problems which can be written (formally)

∂ IK (u) � f − ∂t

(
u −

∫ ·

0
G(u, ·)dW

)
− A(u, ·),

where K is a closed convex subset of L p(ΩT , V ) related to the stochastic constraint
ψ , A is a nonlinear T-monotone operator defined on a space V , (Ω, (Ft )t≥0, P)
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is a filtered probability space with the usual assumptions and W (t) is a Wiener
process in some separable Hilbert space H . Then, we give the corresponding Lewy–
Stampacchia’s (L–S) inequalities, namely

0 ≤ ∂t

(
u −

∫ ·
0

G(u, ·)dW
)

+ A(u, ·) − f ≤
(

f − ∂t

(
ψ −

∫ ·
0

G(ψ, ·)dW
)

− A(ψ, ·)
)−

.

Concerning stochastic obstacle problems, without seeking to be exhaustive, let us
mention the papers of Haussmann and Pardoux [14]where the authors proved thewell-
posedness of the reflected parabolic problem governed by a bounded linear operator.
The question of the semi-linear case was studied by Rascanu [21], Donati-Martin and
Pardoux [10], and Xua and Zhang [28]. A penalty method approach is used as in the
deterministic case. We also cite the recent book of Zambotti [29] where a study of the
nonlinear heat equation with an additive noise is considered.
Several studies on the quasilinear case have been proposed by Denis, Matoussi and
Zhang. In [6], a homogeneous SPDE with obstacle, under Lipschitz hypotheses and
L2-integrability conditions on the coefficients, have been studied by using technics of
Parabolic potential theory. After the introduction of the notion of parabolic capacity,
the authors constructed a solution which admits a quasi-continuous version via the
penalization method by mixing pathwise arguments and some existence result of the
deterministic obstacle problem. The result has been extended in [7] by considering
a weaker L p,q -integrability conditions on the coefficients. Then, they used the same
approach to study the case of non-homogeneous operator as they derived also a local
maximum principle in [8].
In a differential inclusion approach, we mention the works of Rascanu [22] and Ben-
soussan and Rascanu [4] where a maximal monotone operator is considered on a
Hilbert space; Barbu [2] for nonlinear heat problems and Bauzet et al. [3] for an
Allen–Cahn type equation.
Concerningmonotone operators in a non-Hilbertian case, Rascanu andRotenstein [23]
were interested, among other things, in strong solutions to some stochastic variational
inequalities when the barriers cancel the diffusion coefficients. Our aim in this paper
is to revisit similar variational inequalities by adding random dependences for the
operator, the source and the stochastic reaction terms, and the obstacle. We will in

particular assume that f − ∂t

(
ψ −

∫ ·

0
G(ψ, ·)dW

)
− A(ψ, ·) can be written as the

difference of twonon-negative elements of a dual-space to deriveLewy–Stampacchia’s
inequalities. Then, we propose in the appendix-section some extensions to situations
where the obstacle and the solution are not in the same space, or to bilateral obstacle
problems.

There exists a vast literature on deterministic L–S inequalities. Lewy and Stampac-
chia [16] proved the first inequalities in the context of super-harmonic problems. Then,
many authors have been interested in the so-called Lewy–Stampacchia’s inequality
associated with obstacle problems. Let us cite the monograph of Rodrigues [24] for
hyperbolic problems and the paper of Mokrane et al. [18] for elliptic problems in the
context of Sobolev spaces with variable exponents. Concerning parabolic problems,
the first result is the one ofDonati [9] for problemswith amonotone operator. Recently,
Guibé et al. [13] extended this result to the frame of Leray-Lions pseudomonotone
operators.
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To the best of the author’s knowledge, there doesn’t exist in the literature a result
of existence and uniqueness associated with corresponding L–S inequalities, of the
solution to a stochastic obstacle problem with a nonlinear operator associated with a
random obstacle that doesn’t cancel the diffusion coefficients. Our aim, in this paper,
is to propose such a result with general assumptions on the T -monotone operator
and a general multiplicative noise. By using a penalization method of the constraint,
associated with a suitable perturbation of the stochastic reaction to formally lead to an
additive stochastic source on the free-set where the constraint is violated, we are able
to prove on one hand the existence of a solution to the stochastic obstacle problem,
and on the other hand, to prove the corresponding stochastic Lewy–Stampacchia’s
inequalities.

The paper is organized in the following way: after giving the hypotheses, a result
of uniqueness (Lemma 1) and the main result (Theorem 1) in Sects. 2, 3 is devoted
to the proof of the results. A first step concerns the existence of a solution to the
approximating problem associated with a parameter ε. Additionally, some a priori
estimates and passage to the limit with respect to ε are considered when h− is a regular
non-negative element. A first proof of Lewy–Stampacchia’s inequality is given when
h− is still regular. Finally, the proof of Lewy–Stampacchia’s inequality is extended to
the general case. In a next small section we present some numerical illustrations, then
we finish with an appendix where some possible extensions are presented concerning
obstacles with negative values on the boundary and the case of bilateral obstacles.

2 Notation and hypotheses

Let us denote by D ⊂ R
d aLipschitz bounded domain, T > 0 and by p ∈ (1,+∞). As

usual, p′ is the conjugate exponent of p, V = W 1,p
0 (D) if p ≥ 2 and V = W 1,p

0 (D)∩
L2(D) with the graph-norm else. W 1,p

0 (D) denotes the sub-space of elements of
W 1,p(D)with null trace, endowedwith Poincaré’s norm, and H = L2(D) is identified
with its dual space so that, the corresponding dual spaces to V are V ′ = W −1,p′

(D)

if p ≥ 2 and V ′ = W −1,p′
(D) + L2(D) else (cf. e.g. [11, p.24]). The duality bracket

for T ∈ V ′ and v ∈ V is denoted 〈T , v〉.
The presentation of our results is in an abstract way so that one can easily extend them
to more general Riesz separable reflexive Banach spaces V . We will not develop this
point of view because V will not be a Banach lattice.

In our situation, the Lions–Guelfand triple V ↪→d H = L2(D) ↪→d V ′ holds.
Let (Ω,F , P) be a complete probability space (e.g. the classical Wiener space)

endowed with a right-continuous filtration {Ft }t≥0 completed with respect to the mea-
sure P . W (t) is an adapted Wiener process in H with nuclear covariance operator Q
with tr Q < ∞. Denote by ΩT = (0, T ) × Ω and PT the predictable σ -algebra on
ΩT .1

Let L Q(H) denotes the spaces of linear operators Φ defined on Q
1
2 H with values

in H such that ΦQ
1
2 ∈ HS(H) (the space of Hilbert-Schmidt operators from H to

1 PT := σ({]s, t]× Fs |0 ≤ s < t ≤ T , Fs ∈ Fs }∪{{0}× F0|F0 ∈ F0}) (see [17, p. 33]). Then, a process
defined on ΩT with values in a given space E is predictable if it is PT -measurable.
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H ). L Q(H) is a separable Hilbert space relatively to the scalar product (Φ,Ψ )Q =
trΦQ

1
2 (Ψ Q

1
2 )∗. The norm in this space is denoted by | · |Q . We recall that the

stochastic integrals over a Wiener process are defined for predictable operators B

such that E[
∫ t

0
|B(s)|2Qds] < ∞ for any t ≥ 0 [15, Sect. I-2].

We will consider in the sequel the following assumptions:

H1 : Let A : V × ΩT → V ′, G : H × ΩT → L Q(H), ψ : ΩT → V , f : ΩT → V ′
and u0 : Ω → H such that:

H1,1 : For any v ∈ V and u ∈ H , A(v, ·), G(u, ·), ψ and f are predictable.
H1,2 : u0 is F0-measurable.

H2 : ∃α, K̄ > 0, λT , λ ∈ R, l1 ∈ L1(ΩT ) and g ∈ L p′
(ΩT ), both predictable, such

that:

H2,1 : (t, ω) ∈ ΩT a.e., ∀v ∈ V , 〈A(v, t, ω), v〉 + λ‖v‖2H + l1(t, ω) ≥ α‖v‖p
V .

H2,2 : (T − monotonicity [19, p. 120]) (t, ω) ∈ ΩT a.e., ∀v1, v2 ∈ V ,

λT (v1 − v2, (v1 − v2)
+)H + 〈A(v1, t, ω) − A(v2, t, ω), (v1 − v2)

+〉 ≥ 0.

Note that since v1−v2 = (v1−v2)
+−(v2−v1)

+, λT I d + A is alsomonotone.
H2,3 : (t, ω) ∈ ΩT a.e., ∀v ∈ V , ‖A(v, t, ω)‖V ′ ≤ K̄‖v‖p−1

V + g(t, ω).

H2,4 : (Hemi-continuity) (t, ω) ∈ ΩT a.e., ∀v, v1, v2 ∈ V ,
η ∈ R �→ 〈A(v1 + ηv2, t, ω), v〉 is continuous.

Remark 1 AssumptionsH2,2 andH2,4 yield (e.g. [25, Lemma2.16p.38]) the continuity
of λT I d + A, thus of A with respect to v from V -strong to V ′-weak. Thus, for any
v1 ∈ V , the application Av1 : V × ΩT → R, (v, t, ω) �→ 〈A(v, t, ω), v1〉 is a
Carathéodory function.
Therefore, it isB(V )⊗PT measurable and, 〈A(v(t, ω), t, ω), v1〉 is predictable too for
any V −valued predictable process v [5, p.9]. If V is separable, A(v, ·) is predictable
with values in (V ′,B(V ′)) since the weak and the strong measurabilities coincide
thanks to Pettis’s Theorem.

H3 : ∃M > 0 and l ∈ L1(ΩT ), predictable, such that

H3,1 : (t, ω) ∈ ΩT a.e., ∀θ, σ ∈ H , |G(θ, t, ω) − G(σ, t, ω)|2Q ≤ M‖θ − σ‖2H .

H3,2 : (t, ω) ∈ ΩT a.e., ∀u ∈ H , |G(u, t, ω)|2Q ≤ l(t, ω) + M‖u‖2H .

Remark 2 Thanks to Assumption H3, G : L2(D) × ΩT → L Q(L2(D)) is a
Carathéodory function. It is B(H) ⊗ PT measurable and, G(u(t, ω), t, ω) is pre-
dictable too for any H -valued predictable process u.

H4 : ψ ∈ L p(Ω, L p(0, T , V )), ∂t

(
ψ −

∫ ·

0
G(ψ, ·)dW

)
∈ L p′

(ΩT , V ′) predicta-

bles.

Definition 1 Denote by K the convex set of admissible functions

K = {v ∈ L p(ΩT , V ), v(x, t, ω) ≥ ψ(x, t, ω) a.e. in D × ΩT }.
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H5 : f ∈ L p′
(ΩT , V ′) is predictable and one assumes moreover that

h = f − ∂t

(
ψ −

∫ ·

0
G(ψ, ·)dW

)
− A(ψ, ·) ∈ L p(ΩT , V )∗,

where L p(ΩT , V )∗ = (L p′
(ΩT , V ′))+ − (L p′

(ΩT , V ′))+ ⊂ L p′
(ΩT , V ′)

denotes theorder dual: the differenceof twonon-negative elements of L p′
(ΩT , V ′),

i.e. h = h+ − h− where h+, h− ∈ (L p′
(ΩT , V ′))+ are non-negative elements of

L p′
(ΩT , V ′). f , h+, h− are also assumed to be predictable.

We recall that h± ∈ (L p′
(ΩT , V ′))+ in the sense:

∀ϕ ∈ L p(ΩT , V ), ϕ ≥ 0 ⇒ E
∫ T

0
〈h±, ϕ〉ds ≥ 0.

H6 : u0 ∈ L2(Ω, H) satisfies the constraint, i.e. u0 ≥ ψ(0).

Our aim is to look for (u, k), in a space defined straight after, solution to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du + A(u, ·)ds + kds = f ds + G(u, ·)dW in D × ΩT ,

u(t = 0) = u0 in H , a.s.,

u ≥ ψ in D × ΩT ,

u = 0 on ∂ D × ΩT ,

〈k, u − ψ〉 = 0 and k ≤ 0 in ΩT .

(1)

Remark 3 Taking into account Assumptions H4 and H5, it’s worth noticing that ψ

solves the following stochastic problem

dψ + A(ψ, ·)dt = G(ψ, ·)dW + ( f − h)dt,

and the obstacle can be understood as a constraint in the coupling of stochastic PDEs.
For exemple,ψ(t, x) = sin(πx) exp(β(t)−π2t) in (0, T )×(0, 1)×Ω where β is the

standard Brownian motion. ψ is the solution to ∂t (ψ −
∫ ·

0
ψdW ) − ∂2x ψ − 1

2
ψ = 0

and satisfies H4 and H5 with p = 2, A(v, ·) = ∂2x v − 1

2
v and G(v, ·) = v.

When the obstacle is with values in V , one can observe that the problem can reduce to
the question of a positivity obstacle problem with a stochastic reaction term vanishing
at 0.
Indeed, by setting û = u − ψ , û0 = u0 − ψ(0), Â(û) = A(û + ψ) − A(ψ), with

Ĝ(û) = G(û +ψ)− G(ψ) and f̂ = f −∂t
(
ψ −

∫ .

0
G(ψ)dW

)− A(ψ), the equation

becomes dû + Â(û, .)ds + k̂ds = f̂ ds + Ĝ(û, .)dW in D × ΩT with Ĝ(0, .) = 0
and under the constraint û ≥ 0.
In case the obstacle ψ is not with values in V , if for example ψ has non-positive
values on the boundary of D, or in case of a bilateral obstacle problem, this change of
problem may not be helpful and we present some extensions in this direction in the
appendix-section 5.
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Let us introduce the concept of a solution for Problem (1).

Definition 2 The pair (u, k) is a solution to Problem (1) if:

• u ∈ L p(ΩT , V ) and k ∈ L p′
(ΩT , V ′) are predictable, u ∈ L2(Ω, C([0, T ], H)).

• u(t = 0) = u0 and u ∈ K .

• P-a.s, for all t ∈ [0, T ],

u(t) +
∫ t

0
kds +

∫ t

0
A(u, ·)ds = u0 +

∫ t

0
G(u, ·)dW (s) +

∫ t

0
f ds.

• −k ∈ (L p′
(ΩT , V ′))+ and ∀v ∈ K , 〈k, u − v〉 ≥ 0 a.e. in ΩT .

Remark 4 Since the embedding V ↪→ H is continuous, u is equally a predictable
process with values in H or in V (thanks to Kuratowski’s theorem [27, Th. 1.1 p. 5]).

Remark 5 We remind that (L p(ΩT , V ))+ = {u ∈ L p(ΩT , V ), u(t, ω) ∈
V + a.e. in ΩT }, therefore, −k ∈ (L p′

(ΩT , V ′))+ if and only if −k(t, ω) ∈ (V ′)+,
a.e. in ΩT .
Indeed, If one assumes first that −k ∈ (L p′

(ΩT , V ′))+. Then, for any given ϕ ∈ V +,
any A ∈ F and any B ∈ B(0, T ), 1A×Bϕ ∈ (L p(ΩT , V ))+.
Thus,

∫
A×B〈k(t, ω), ϕ〉dtd P ≤ 0 for any such A and B and 〈k(t, ω), ϕ〉 ≤ 0 on a

subset of ΩT of full measure, depending a priori on ϕ.
Since V is separable, for a given dense family {ϕn, n ∈ N} ⊂ V , there exists Ω̃T ⊂ ΩT

a subset of full measure such that 〈k(t, ω), ϕ+
n 〉 ≤ 0 for any n and all (t, ω) ∈ Ω̃T .

Let ϕ ∈ V + and (ϕl) ⊂ {ϕn, n ∈ N} satisfying ϕl → ϕ in V . Thus, ϕ+
l → ϕ+ = ϕ

in V and since 〈k(t, ω), ϕ+
l 〉 ≤ 0, the same inequality holds for ϕ. Thus, −k(t, ω) ∈

(V ′)+, (t, ω) ∈ ΩT a.e.
The converse is immediate: ifϕ(t, ω) ∈ V + a.e. inΩT , one gets 〈k(t, ω), ϕ(t, ω)〉 ≤ 0
a.e. in ΩT and

∫
ΩT

〈k(t, ω), ϕ(t, ω)〉dtd P ≤ 0.

As a consequence, knowing that −k ∈ (L p′
(ΩT , V ′))+ and u ∈ K , imply that the

condition: 〈k, u−ψ〉 = 0 a.e. inΩT is equivalent to the condition:∀v ∈ K , 〈k, u−v〉 ≥
0 a.e. in ΩT .

Let us state our main result.

Theorem 1 Under Assumptions (H1)–(H6), there exists a unique solution (u, k) to
Problem (1) in the sense of Definition 2. Moreover, the following Lewy–Stampacchia’s
inequality holds

0 ≤ ∂t

(
u −

∫ ·
0

G(u, ·)dW
)

+ A(u, ·) − f ≤ h− =
(

f − ∂t

(
ψ −

∫ ·
0

G(ψ, ·)dW
)

− A(ψ, ·)
)−

.

Remark 6 Note that Problem (1) can be written in the equivalent form:

∂ IK (u) � f − ∂t

(
u −

∫ ·

0
G(u, ·)dW

)
− A(u, ·)
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where ∂ IK (u) represents the sub-differential of IK : L p(ΩT , V ) → R̄ defined as

IK (u) =
{
0, u ∈ K ,

+∞, u /∈ K ,

and ∂ IK (u) = NK (u) = {y ∈ L p′
(ΩT , V ′); E

∫ T

0
〈y, u − v〉ds ≥ 0,∀v ∈ K } (see

[1, p. 7 − 8]).

Before entering in the proof of our main theorem, we start with the following result.

Lemma 1 If (u1, k1) and (u2, k2) are two solutions to (1) in the sense of Definition 2
associated with two different forces f1 and f2 then: there exists a positive constant
C > 0 such that

E sup
t∈[0,T ]

‖(u1 − u2)(t)‖2H ≤ C‖ f1 − f2‖L p′
(ΩT ,V ′)‖u1 − u2‖L p(ΩT ,V ).

Remark 7 Note that Lemma 1 ensures the uniqueness of the solution to (1) in the
general framework.

Proof For any t ∈ [0, T ] and P-a.s we have

u1(t) − u2(t) +
∫ t

0
[k1 − k2]ds +

∫ t

0
[A(u1, ·) − A(u2, ·)]ds

=
∫ t

0
[G(u1, ·) − G(u2, ·)]dW (s) +

∫ t

0
[ f1 − f2]ds.

Applying Ito’s formula with F(t, v) = 1

2
‖v‖2H , one gets for any t ∈ [0, T ],

1

2
‖(u1 − u2)(t)‖2H +

∫ t

0
〈A(u1, ·) − A(u2, ·), u1 − u2〉ds +

∫ t

0
〈k1 − k2, u1 − u2〉ds

=
∫ t

0
〈 f1 − f2, u1 − u2〉ds +

∫ t

0
〈[G(u1, ·) − G(u2, ·)]dW (s), u1 − u2〉

+ 1

2

∫ t

0
|G(u1, ·) − G(u2, ·)|2Qds.

• Since u1, u2 ∈ K , Remark 5 yields a.e. in ΩT ,

〈k1 − k2, u1 − u2〉 = 〈k1, u1 − u2〉 + 〈k2, u2 − u1〉 ≥ 0.

Therefore, for any t

∫ t

0
〈k1 − k2, u1 − u2〉ds =

∫ t

0
〈k1, u1 − u2〉 + 〈k2, u2 − u1〉ds ≥ 0 a.s.
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• ∀t ∈ [0, T ], 1

2

∫ t

0
|G(u1, ·) − G(u2, ·)|2Qds ≤ M

∫ t

0
‖u1 − u2‖2H ds.

• Since λT I d + A is T-monotone, ∀t ∈ [0, T ],
∫ t

0
〈A(u1, ·) − A(u2, ·), u1 − u2〉ds ≥ −λT

∫ t

0
‖u1 − u2‖2H ds.

• ByBurkhölder–Davis–Gundy’s inequality [15, Theorem 2.5 p.1240] (see also [23,
p.652]) and Young’s inequality, there exists a positive δ such that

E

[
sup

t∈[0,T ]
|
∫ t

0
〈[G(u1, ·) − G(u2, ·)]dW (s), u1 − u2〉|

]

≤ 3δ

2
E sup

t∈[0,T ]
‖(u1 − u2)(t)‖2H + 3M

2δ
E

∫ T

0
‖(u1 − u2)(s)‖2H ds.

• E sup
t∈[0,T ]

|
∫ t

0
〈 f1 − f2, u1 − u2〉ds| ≤ ‖ f1 − f2‖L p′

(ΩT ,V ′)‖u1 − u2‖L p(ΩT ,V ).

With a convenient choice of δ (e.g. δ = 1
4 ), we deduce the existence of a positive

constant c such that

E sup
t∈[0,T ]

‖(u1 − u2)(t)‖2H ≤c‖ f1 − f2‖L p′
(ΩT ,V ′)‖u1 − u2‖L p(ΩT ,V )

+ c
∫ T

0
E sup

τ∈[0,s]
‖(u1 − u2)(τ )‖2H ds. (2)

Then, Gronwall’s lemma ensures that

E sup
t∈[0,T ]

‖(u1 − u2)(t)‖2H ≤ cecT ‖ f1 − f2‖L p′
(ΩT ,V ′)‖u1 − u2‖L p(ΩT ,V ). (3)

��

3 Proof of Theorem 1

We will prove Theorem 1 in three steps:

• Existence of the solution and a first Lewy–Stampacchia’s inequality, assuming that
h− is regular.

• A second Lewy–Stampacchia’s inequality, still with a regular h−.
• Proof of the main theorem in the general case.
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3.1 Existence of the solution and a first Lewy–Stampacchia’s inequality, assuming
that h− is regular.

3.1.1 Penalization

Let ε > 0 and consider the following approximating problem:

⎧
⎨
⎩

uε(t) +
∫ t

0
(A(uε, ·) − 1

ε
[(uε − ψ)−]q̃−1 − f )ds = u0 +

∫ t

0
G̃(uε, ·)dW (s)

uε(0) = u0,

(4)

where q̃ = min(p, 2) and G̃(uε, ·) = G(max(uε, ψ), ·). The idea of the perturba-
tion of G is to have formally an additive stochastic source on the free-set where the
constraint is violated.
Note that G̃ satisfies also Assumptions H1 and H3, as well as Assumption H5 since
G̃(ψ, ·) = G(ψ, ·). Indeed, sinceψ is predictable in H , max(u, ψ) is also predictable
for any u ∈ H and G̃(u, ·) is predictable thanks to Remark 2.
For any u, v ∈ V , |G̃(u, ·) − G̃(v, ·)|2Q ≤ M‖max(u, ψ) −max(v, ψ)‖2H ≤ M‖u −
v‖2H .

The only difference in the assumptions lies in H3,2 where one gets now that

|G̃(u, ·)|2Q ≤ l + 2M‖ψ‖2H + 2M‖u‖2H = l̃ + M̃‖u‖2H

where l̃ is a L1(ΩT )-predictable element by composition of functions, depending only
on the data.

Consider Ā(uε, ·) = A(uε, ·) − 1

ε
[(uε − ψ)−]q̃−1 − f and note that:

• By construction, Ā is an operator defined on V × ΩT with values in V ′.
• Since ψ and f are predictable with values in V and V ′ respectively, u �→ u− is

a Lipschitz-continuous mapping then, for any v ∈ V , −1

ε
[(v − ψ)−]q̃−1 − f is

predictable with values in V ′ and therefore Ā satisfies Assumption H1,1.
• Since x �→ −x− is non-decreasing, λT I d + Ā is T-monotone.
• The structure of the penalization operator yields the hemi-continuity of Ā in the
sense of H2,4.

• (Coercivity): Note that for any δ > 0, there exists Cδ,ε > 0 such that: ∀v ∈ V ,

〈 f , v〉 ≤Cδ‖ f ‖p′
V ′ + δ‖v‖p

V ;〈
−1

ε
[(v − ψ)−]q̃−1, v

〉
≥

〈
−1

ε
[(v − ψ)−]q̃−1, ψ

〉

≥ − δ‖v‖q̃
Lq̃ (D)

− Cδ,ε‖ψ‖q̃
Lq̃ (D)

≥ − δC‖v‖p
V − Cδ,ε‖ψ‖q̃

Lq̃ (D)
− C p
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where C is related to the continuous embedding of V in Lq̃(D).

Denote by l̃1 = l1+Cδ‖ f ‖p′
V ′ +Cδ,ε‖ψ‖q̃

Lq̃ (D)
. It is a L1(ΩT ) predictable element

thanks to the assumptions on f and ψ , depending only on the data. Therefore, by
a convenient choice of δ, Ā satisfies H2,1 by considering l̃1 instead of l1.

• (Boundedness): ∀v ∈ V ,

∥∥∥∥−1

ε
[(v − ψ)−]q̃−1

∥∥∥∥
Lq̃′

(D)

=1

ε
‖(v − ψ)−‖q̃−1

Lq̃ (D)
≤ Cε

(
‖v‖q̃−1

Lq̃ (D)
+ ‖ψ‖q̃−1

Lq̃ (D)

)

≤Cε

(
‖v‖p−1

Lq̃ (D)
+ ‖ψ‖p−1

Lq̃ (D)

)
+ C p

since q̃ < p may be possible. Now, since the embeddings of Lq̃ ′
(D) in V ′ and of

V in Lq̃(D) are continuous,

∥∥∥∥−1

ε
[(v − ψ)−]q̃−1

∥∥∥∥
V ′

≤ Cε

(
‖v‖p−1

V + ‖ψ‖p−1
V

)
+ C p

and Assumption H2,3 is satisfied with K̄ replaced by K̄ + Cε and g by g̃ =
g + Cε‖ψ‖p−1

V + f + C p which is a predictable element of L p′
(ΩT ).

• (The noise): Let us denote by U = Q
1
2 (H), we recall that U is a separable Hilbert

space endowed with the scalar product (u, v)U = (Q− 1
2 u, Q− 1

2 u)H (see [17,

Prop. C.0.3 p. 221]) and note that G̃ ∈ H S(Q
1
2 (H), H). Since (W (t))t∈[0,T ] is

a Wiener process in H with a nuclear covariance operator Q, (W (t))t∈[0,T ] is a
Cylindrical Wiener process with a covariance operator I in U .

By [17, Th. 4.2.4 p.91 ] and Remark 4, for all ε > 0, there exists a unique solution
uε ∈ L p(ΩT , V ) predictable such that uε ∈ L2(Ω, C([0, T ], H)) and satisfying (4)
for all t ∈ [0, T ] and P-a.s. in Ω .
Moreover, thanks to [17, Th. 4.2.5 p.91], (uε)ε>0 is bounded in L p(ΩT , V ) ∩
L2(ΩT , H).
Thanks to Assumptions H2,3, we get the following lemma.

Lemma 2 • (uε)ε>0 is bounded in L p(ΩT , V ) ∩ C([0, T ], L2(Ω, H)).
• (A(uε, ·))ε>0 is bounded in L p′

(ΩT , V ′).

Proof Let ε > 0 and v∗ ∈ K such that ∂t
(
v∗ − ∫ ·

0 G̃(v∗, ·)dW )
) ∈ L p′

(ΩT , V ′) with
predictable assumptions. Note that v∗ = ψ holds in this situation and

uε(t) − v∗(t) +
∫ t

0

(
A(uε, ·) − 1

ε
[(uε − ψ)−]q̃−1)ds

= u0 − v∗(0) +
∫ t

0
[ f − ∂t (v

∗ −
∫ ·

0
G̃(v∗, ·)dW )]ds

+
∫ t

0
[G̃(uε, ·) − G̃(v∗, ·)]dW (s).

123



Stoch PDE: Anal Comp

Itô’s stochastic energy yields

‖uε − v∗‖2H (t) + 2
∫ t

0
〈A(uε, ·), uε − v∗〉ds

− 2
∫ t

0

∫

D

1

ε
[(uε − ψ)−]q̃−1(uε − v∗)dxds − ‖u0 − v∗(0)‖2H

= 2
∫ t

0
〈 f − ∂s(v

∗ −
∫ ·

0
G̃(v∗, ·)dW ), uε − v∗〉ds

+ 2
∫ t

0

(
uε − v∗, [G̃(uε, ·) − G̃(v∗, ·)]dW (s)

)
H

+
∫ t

0
|G̃(uε, ·) − G̃(v∗, ·)|2Qds.

Note that

− 2
∫ t

0

∫

D

1

ε
[(uε − ψ)−]q̃−1(uε − v∗)dxds

= −2

ε

∫ t

0

∫

D
[(uε − ψ)−]q̃−1(uε − ψ)dxds

− 2

ε

∫ t

0

∫

D
[(uε − ψ)−]q̃−1(ψ − v∗)dxds ≥ 0,

〈A(uε, ·), uε − v∗〉 ≥ α‖uε‖p
V − λ‖uε‖2H − l1(t, ω) − 〈A(uε, ·), v∗〉

≥ α‖uε‖p
V − λ‖uε‖2H − l1(t, ω) − K̄‖uε‖p−1

V ‖v∗‖V − g(t, ω)‖v∗‖V

≥ α

2
‖uε‖p

V − λ‖uε‖2H − l1(t, ω) − C(v∗)(t, ω)

where C(v∗) ∈ L1(ΩT ). Thus, for any positive γ , Young’s inequality yields the
existence of a positive constant Cγ that may change form line to line, such that

E‖uε − v∗‖2H (t) + 2E
∫ t

0

α

2
‖uε‖p

V (s)ds

≤ λE
∫ t

0
‖uε‖2H (s)ds + ‖l1 + C(v∗)‖L1(ΩT ) + Cγ ( f , ∂s(v

∗ −
∫ ·

0
G̃(v∗, ·)dW ))

+ γ E
∫ t

0
‖uε − v∗‖p

V (s)ds + E
∫ t

0
|G̃(uε, ·) − G̃(v∗, ·)|2Qds.

≤ C E
∫ t

0
‖uε − v∗‖2H (s)ds + α

2
E

∫ t

0
‖uε‖p

V (s)ds + C,

for a suitable choice of γ and thanks to H3,2.
Then, the first part of the lemma is proved by Gronwall’s lemma, and the second one
by adding H2,3 to the first estimate. ��
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3.1.2 A priori estimates with a regular h−

H7: We will assume in this subsection that h− is a predictable non negative element
of Lq̃ ′

(ΩT , Lq̃ ′
(D)).

Lemma 3 Under H7, (
1

ε
[(uε − ψ)−]q̃−1)ε>0 is bounded in Lq̃ ′

(ΩT × D).

Proof Let δ > 0 and consider the following approximation from [20, p. 152].

Fδ(r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

r2 − δ2

6
i f r ≤ −δ,

− r4

2δ2
− 4r3

3δ
i f − δ ≤ r ≤ 0,

0 i f r ≥ 0.

(5)

Note that (−1

2
F ′

δ)δ approximates the negative part. Moreover, Fδ(·) ∈ C2(R), and

satisfies:

⎧⎨
⎩

|Fδ(r)| ≤ r2,
|F ′

δ(r)| ≤ 2r and ∀r ∈ R, F ′
δ(r) ≤ 0,

|F ′′
δ (r)| ≤ 8

3 and ∀r ∈ R, F ′′
δ (r) ≥ 0.

Set ϕδ(v) =
∫

D
Fδ(v(x))dx, v ∈ L2(D) and denote by S the set {uε ≤ ψ}.

Applying Ito’s formula [20, Th. 4.2 p. 65] ( see also [23, Lemma 4]) to the process
uε − ψ , one gets for any t ∈ [0, T ]

ϕδ(uε(t) − ψ(t)) +
∫ t

0
〈A(uε, ·) − A(ψ, ·), F ′

δ(uε − ψ)〉ds

− 1

ε

∫ t

0
〈[(uε − ψ)−]q̃−1, F ′

δ(uε − ψ)〉ds

=
=0︷ ︸︸ ︷

ϕδ(uε(0) − ψ(0)) +

≤0︷ ︸︸ ︷∫ t

0
〈h+, F ′

δ(uε − ψ)〉ds −
∫ t

0
〈h−, F ′

δ(uε − ψ)〉ds

+
∫ t

0
({G̃(uε, ·) − G̃(ψ, ·)}dW (s), F ′

δ(uε − ψ))

+ 1

2

∫ t

0
T r(F ′′

δ (uε − ψ){G̃(uε, ·) − G̃(ψ, ·)}Q{G̃(uε, ·) − G̃(ψ, ·)}∗)ds.

Since G̃(uε, ·) = G̃(ψ, ·) on the set S, we deduce

1

2

∫ t

0
T r(F ′′

δ (uε − ψ){G̃(uε, ·) − G̃(ψ, ·)}Q{G̃(uε, ·) − G̃(ψ, ·)}∗)ds = 0.

123



Stoch PDE: Anal Comp

Taking the expectation, one has

Eϕδ(uε(t) − ψ(t)) + E
∫ t

0
〈A(uε, ·) − A(ψ, ·), F ′

δ(uε − ψ)〉ds

− 1

ε
E

∫ t

0
〈[(uε − ψ)−]q̃−1, F ′

δ(uε − ψ)〉ds ≤ E
∫ t

0
〈−h−, F ′

δ(uε − ψ)〉ds.

Claim: a.e. t ∈ [0, T ] and P-a.s, F ′
δ(uε − ψ) converges to −2(uε − ψ)− in V .

Indeed, we have

F ′
δ(r) =

⎧⎪⎪⎨
⎪⎪⎩

2r i f r ≤ −δ,

−2
r3

δ2
− 4

r2

δ
i f − δ ≤ r ≤ 0,

0 i f r ≥ 0.

(6)

Let us estimate ‖F ′
δ(uε − ψ) + 2(uε − ψ)−‖V ,

‖F ′
δ(uε − ψ) + 2(uε − ψ)−‖V

=
(∫

D
|F ′

δ(uε(x) − ψ(x)) + 2(uε(x) − ψ(x))−|2dx

) 1
2

+
(∫

D
|∇F ′

δ(uε(x) − ψ(x)) + 2∇(uε(x) − ψ(x))−|pdx

) 1
p

.

We denote by B the set {−δ ≤ uε − ψ ≤ 0}. On one hand, one has

∫

D
|F ′

δ(uε(x) − ψ(x)) + 2(uε(x) − ψ(x))−|2dx

=
∫

B

∣∣∣∣−
2

δ2
(uε(x) − ψ(x))3 − 4

δ
(uε(x) − ψ(x))2 − 2(uε(x) − ψ(x))

∣∣∣∣
2

dx

≤ C2

∫

D
8δ2dx = 8C2δ

2mes(D) → 0 as δ → 0.

On the other hand, setting F = {−δ < uε − ψ < 0} one has by the chain rule in the
Sobolev spaces

∫

D
|∇F ′

δ(uε(x) − ψ(x)) + 2∇(uε(x) − ψ(x))−|pdx

=
∫

F

∣∣∣∣
2

δ2
∇(uε(x) − ψ(x))3 + 4

δ
∇(uε(x) − ψ(x))2 + 2∇(uε(x) − ψ(x))

∣∣∣∣
p

dx

≤
∫

F

∣∣∣∣
(
6

δ2
(uε(x) − ψ(x))2 + 8

δ
(uε(x) − ψ(x)) + 2

)
∇(uε(x) − ψ(x))

∣∣∣∣
p

dx .
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We have | 6
δ2

(uε(x) − ψ(x))2 + 8

δ
(uε(x) − ψ(x)) + 2|IF ≤ 2I{−δ<uε−ψ<0} → 0 a.e.

x ∈ D as δ → 0 and

∣∣∣∣
(
6

δ2
(uε(x) − ψ(x))2 + 8

δ
(uε(x) − ψ(x)) + 2

)
IF∇(uε(x) − ψ(x))

∣∣∣∣
p

≤ 2|∇(uε(x) − ψ(x))|p.

This last function is in L1(D) and dominated convergence theorem ensures that∫

D
|∇F ′

δ(uε(x) − ψ(x)) + 2∇(uε(x) − ψ(x))−|pdx → 0.

Therefore a.e. t ∈ [0, T ] and P-a.s., one gets when δ → 0

• ∀t ∈ [0, T ], ϕδ(uε(t) − ψ(t)) −→ ‖(uε − ψ)−(t)‖2
L2(D)

,

• 〈A(uε, ·) − A(ψ, ·), F ′
δ(uε − ψ)〉 −→ 〈A(uε, ·) − A(ψ, ·),−2(uε − ψ)−〉

≥ −2λT ‖(uε − ψ)−‖2H ,

since this last term is equal to

2〈A(ψ, ·) − A(uε, ·), (ψ − uε)
+〉 ≥ −2λT ‖(ψ − uε)

+‖2H

thanks to H2,2.
• 〈−[(uε −ψ)−]q̃−1, F ′

δ(uε −ψ)〉 → 〈−[(uε −ψ)−]q̃−1,−2(uε −ψ)−〉 = 2‖(uε −
ψ)−‖q̃

Lq̃ (D)
,

• 〈−h−, F ′
δ(uε − ψ)〉 → 〈−h−, 2(uε − ψ)I{uε<ψ}〉 = 2〈h−, (uε − ψ)−〉.

Again, dominated convergence theorem ensures that for any t

E‖(uε − ψ)−(t)‖2L2(D)
+ 2

ε
E

∫ t

0
‖(uε − ψ)−(s)‖q̃

Lq̃ (D)
ds

≤ 2E
∫ t

0
〈h−(s), (uε − ψ)−(s)〉ds + 2λT

∫ t

0
‖(uε − ψ)−(s)‖2H ds. (7)

To continue our proof, we will consider two cases.

• If p ≥ 2 then q̃ = 2. By multiplying (7) by
1

ε
, one gets

1

2ε
E‖(uε − ψ)−(T )‖2L2(D)

+ 1

ε2
E

∫ T

0
‖(uε − ψ)−(s)‖2L2(D)

ds

≤ E
∫ T

0
〈h−(s),

1

ε
(uε − ψ)−(s)〉ds + ελ+

T

ε2

∫ T

0
‖(uε − ψ)−(s)‖2H ds.
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Since E
∫ T

0
〈h−(s),

1

ε
(uε − ψ)−(s)〉ds ≤ 1

2ε2
E

∫ T

0
‖(uε − ψ)−(s)‖2L2(D)

ds +
1

2
E

∫ T

0
‖h−(s)‖2L2(D)

ds, one has for ε ≤ 1

4λ+
T + 1

,

1

2ε
E‖(uε − ψ)−(T )‖2L2(D)

+ 1

4ε2
E

∫ T

0
‖(uε − ψ)−(s)‖2L2(D)

ds

≤ E
∫ T

0
‖h−(s)‖2L2(D)

ds.

Therefore (
1

ε
(uε − ψ)−)ε>0 is bounded in L2(ΩT × D).

• If 2 > p > 1 then q̃ = p. From Gronwall’s lemma applied to (7), one gets

1

ε
‖(uε − ψ)−‖p

L p(ΩT ×D) =1

ε
E

∫ T

0
‖(uε − ψ)−(s)‖p

L p(D)ds

≤C(T )E
∫ T

0
|〈h−(s), (uε − ψ)−(s)〉|ds

≤C‖h−‖L p′
(ΩT ×D)

‖(uε − ψ)−‖L p(ΩT ×D),

hence
1

ε
‖(uε − ψ)−‖p−1

L p(ΩT ×D) ≤ ‖h−‖L p′
(ΩT ×D)

. On the other hand, we have

∥∥∥∥
1

ε
[(uε − ψ)−]p−1

∥∥∥∥
L p′

(ΩT ×D)

=1

ε
(E

∫ T

0

∫

D
[(uε − ψ)−](p−1)p′

dxds)
1
p′

=1

ε
‖(uε − ψ)−‖p−1

L p(ΩT ×D).

Consequently, (
1

ε
[(uε − ψ)−]p−1)ε>0 is bounded in L p′

(ΩT × D).

��
As a consequence the following lemma holds.

Lemma 4 Under H7, (uε)ε>0 is a Cauchy sequence in the space L2(Ω, C([0, T ], H)).

Proof Let 1 > ε ≥ δ > 0 and consider the process uε − uδ , which satisfies the
following equation

uε(t) − uδ(t) +
∫ t

0
(A(uε, ·) − A(uδ, ·))

+
(

−1

ε
[(uε − ψ)−]q̃−1 + 1

δ
[(uδ − ψ)−]q̃−1

)
ds

=
∫ t

0
(G̃(uε, ·) − G̃(uδ, ·))dW (s).
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Applying Ito’s formula with F(t, v) = 1

2
‖v‖2H , one gets for any t ∈ [0, T ]

1

2
‖(uε − uδ)(t)‖2H +

∫ t

0
〈A(uε, ·) − A(uδ, ·), uε − uδ〉ds

+
∫ t

0

〈
−1

ε
[(uε − ψ)−]q̃−1 + 1

δ
[(uδ − ψ)−]q̃−1, uε − uδ

〉
ds

=
∫ t

0
〈(G̃(uε, ·) − G̃(uδ, ·))dW (s), uε − uδ〉 + 1

2

∫ t

0
|G̃(uε, ·) − G̃(uδ, ·)|2Qds.

We argue as in the proof of (2) with f1 = f2 and note that we need only to discuss
the penalization term.

On one hand, using the monotonicity of the penalization operator, one deduces

∫ t

0

〈
−1

ε
[(uε − ψ)−]q̃−1 + 1

δ
[(uδ − ψ)−]q̃−1, uε − uδ

〉
ds

≥ ε − δ

εδ

∫ t

0
〈[(uδ − ψ)−]q̃−1, uε − uδ〉ds.

On the other hand, we have

ε − δ

εδ

∫ t

0
〈[(uδ − ψ)−]q̃−1, uε − uδ〉ds

= ε − δ

εδ

(∫ t

0
〈[(uδ − ψ)−]q̃−1, uε − ψ〉ds +

∫ t

0
〈[(uδ − ψ)−]q̃−1,−(uδ − ψ)〉ds

)
.

Since
ε − δ

εδ

∫ t

0
〈[(uδ − ψ)−]q̃−1,−(uδ − ψ)〉ds ≥ 0, it holds that

ε − δ

εδ

∫ t

0
〈[(uδ − ψ)−]q̃−1, uε − uδ〉ds ≥ ε − δ

εδ

∫ t

0
〈[(uδ − ψ)−]q̃−1, uε − ψ〉ds

≥ −ε − δ

εδ

∫ t

0
〈[(uδ − ψ)−]q̃−1, (uε − ψ)−〉ds.

We distinguish two cases:

• If p ≥ 2, then q̃ = 2. Since (
1

ε
(uε −ψ)−)ε>0 is bounded in L2(ΩT × D), we get

0 ≤ε − δ

εδ
E

∫ T

0
〈[(uδ − ψ)−]q̃−1, (uε − ψ)−〉ds

= (ε − δ)E
∫ T

0

〈
1

δ
(uδ − ψ)−,

1

ε
(uε − ψ)−

〉
ds ≤ Cε.
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• If 1 < p < 2, then q̃ = p. Since (
1

ε
[(uε −ψ)−]p−1)ε>0 is bounded in L p′

(ΩT ×
D), we get

0 ≤ε − δ

εδ
E

∫ T

0
〈[(uδ − ψ)−]p−1, (uε − ψ)−〉ds

= ε − δ

ε
E

∫ T

0

〈
1

δ
[(uδ − ψ)−]p−1, (uε − ψ)−

〉
ds

≤ ε − δ

ε
C‖(uε − ψ)−‖L p(ΩT ×D) ≤ Cε

1
p−1 .

By arguments similar to the ones used to obtain (2), we deduce

E sup
t∈[0,T ]

‖(uε − uδ)(t)‖2H ≤ C(ε + ε
1

p−1 ) + C
∫ T

0
E sup

τ∈[0,s]
‖(uε − uδ)(τ )‖2H ds

and Gronwall’s lemma ensures that (uε)ε>0 is a Cauchy sequence in the space
L2(Ω, C([0, T ], H)). ��

3.1.3 At the limit as� → 0

From Lemmas 2, 3 and 4, we deduce the following result.

Lemma 5 There exist u ∈ L p(ΩT , V ) ∩ L2(Ω, C([0, T ], H)) ∩ N 2
W (0, T , H)2 and

(ρ, χ) ∈ Lq̃ ′
(ΩT , Lq̃ ′

(D)) × L p′
(ΩT , V ′), each one predictable, such that the fol-

lowing convergences hold, up to sub-sequences denoted by the same way,

uε⇀u in L p(ΩT , V ), (8)

uε → u in L2(Ω, C([0, T ], H)), (9)

A(uε, ·)⇀χ in L p′
(ΩT , V ′), (10)

−1

ε
[(uε − ψ)−]q̃−1⇀ρ, ρ ≤ 0 in Lq̃ ′

(ΩT × D). (11)

Proof By compactness with respect to the weak topology in the spaces L p(ΩT , V ),
L p′

(ΩT , V ′) and Lq̃ ′
(ΩT × D), there exist u ∈ L p(ΩT , V ), χ ∈ L p′

(ΩT , V ′) and
ρ ∈ Lq̃ ′

(ΩT × D) such that (8), (10) and (11) hold (for sub-sequences). Thanks
to Lemma 4, we get the strong convergence of uε to u in L2(Ω, C([0, T ], H)) ↪→
L2(ΩT × D). Moreover,

• Since uε ∈ N 2
W (0, T , H), a Hilbert space, u ∈ N 2

W (0, T , H) too.
• Since (A(uε, ·))ε is predictable with values in V ′ (cf. Remark 1), the same applies
to χ .

2 N 2
W (0, T , H) denotes the space of all predictable process of L2(ΩT , H) (see [17, p. 36]).
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• Since uε, ψ ∈ N 2
W (0, T , H), −1

ε
[(uε − ψ)−]q̃−1 is a predictable process with

values in Lq̃ ′
(D). Hence ρ is a predictable process with values in Lq̃ ′

(D) and
ρ ≤ 0 since the set of non positive functions of Lq̃ ′

(ΩT × D) is a closed convex
subset of Lq̃ ′

(ΩT × D).

��
Remark 8 (initial condition and constraint).

• Since uε converges to u in L2(Ω, C([0, T ], H)) then uε(0) = u0 converges to
u(0) in L2(Ω, H) and u(0) = u0 in L2(Ω, H).

• Thanks to Lemma 3, we deduce that (uε −ψ)− → (u −ψ)− = 0 in Lq̃(ΩT × D)

and u ∈ K .

Lemma 6 Under H7,
∫ ·

0
G̃(uε, ·)dW (s) →

∫ ·

0
G(u, ·)dW (s) in L2(Ω, C([0, T ], H))

when ε → 0.

Proof By Burkhölder–Davis–Gundy’s inequality [23, p.652], one gets

E sup
t∈[0,T ]

|
∫ t

0
(G̃(uε, ·) − G̃(u, ·))dW (s)|2H ≤ 3E

∫ T

0
|G̃(uε, ·) − G̃(u, ·)|2Qds

(by using H3) ≤ 3M E
∫ T

0
‖uε − u‖2H ds.

Since uε → u in L2(Ω, C([0, T ], H)) with u ∈ K , one deduces
∫ ·
0

G̃(uε, ·)dW (s) →
∫ ·
0

G̃(u, ·)dW (s) =
∫ ·
0

G(u, ·)dW (s) in L2(Ω, C([0, T ], H)).

��
Lemma 7 We have ρ(u − ψ) = 0 a.e. in ΩT and, ∀v ∈ K , ρ(u − v) ≥ 0 a.e. in ΩT .

Proof On one hand, by Lemma 3, we have

0 ≤ −1

ε
E

∫ t

0
〈[(uε − ψ)−]q̃−1, uε − ψ〉ds

= 1

ε
E

∫ t

0
‖(uε − ψ)−(s)‖q̃

Lq̃ ds ≤ Cεq̃ ′−1 → 0.

On the other hand, by Lemma 5, we distinguish two cases:

• If p ≥ 2 then −1

ε
(uε − ψ)−⇀ρ in L2(ΩT × D) and uε − ψ → u − ψ in

L2(ΩT × D) by Lemma 4. Hence E
∫ T
0

∫
D ρ(u −ψ)dxdt = 0 and ρ(u −ψ) = 0

since the integrand is always non-positive.
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• If 2 > p > 1 then −1

ε
[(uε −ψ)−]p−1⇀ρ in L p′

(ΩT × D) and uε −ψ → u −ψ

in L p(ΩT × D) by Lemma 4 and the same conclusion holds.

One finishes the proof by noticing that if v ∈ K , one has a.e. in ΩT that,

〈ρ, u − v〉 =
=0︷ ︸︸ ︷

〈ρ, u − ψ〉 +
≥0︷ ︸︸ ︷

〈ρ,ψ − v〉 ≥ 0.

��
Our aim now is to prove that A(u, ·) = χ . We have for any t ∈ [0, T ]

uε(t) +
∫ t

0
(A(uε, ·) − 1

ε
[(uε − ψ)−]q̃−1 − f )ds = u0 +

∫ t

0
G̃(uε, ·)dW (s),

and u(t) +
∫ t

0
(χ + ρ − f )ds = u0 +

∫ t

0
G̃(u, ·)dW (s).

Hence

uε(t) − u(t) +
∫ t

0

[
(A(uε, ·) − χ) +

(
−1

ε
[(uε − ψ)−]q̃−1 − ρ

)]
ds

=
∫ t

0
G̃(uε, ·) − G̃(u, ·)dW (s).

Note that (A(uε, ·)−χ)+(−1

ε
[(uε −ψ)−]q̃−1−ρ) ∈ L p′

(ΩT , V ′) is predictable and

that
∫ t

0
G̃(uε, ·)− G̃(u, ·)dW (s) is a square integrable Ft−martingale. Thus, we can

apply Ito’s formula [20, Theorem 4.2 p. 65] to the process uε −u with F(v) = 1

2
‖v‖2H

to get

1

2
‖(uε − u)(t)‖2H +

I1︷ ︸︸ ︷∫ t

0
〈A(uε, ·) − χ, uε − u〉ds

+

I2︷ ︸︸ ︷∫ t

0
〈−1

ε
[(uε − ψ)−]q̃−1 − ρ, uε − u〉ds

=

I3︷ ︸︸ ︷∫ t

0
〈G̃(uε, ·) − G̃(u, ·)dW (s), uε − u〉 +

I4︷ ︸︸ ︷
1

2

∫ t

0
|G̃(uε, ·) − G̃(u, ·)|2Qds .

Let us consider in the sequel a given v ∈ L p(ΩT , V ) ∩ L2(Ω, C([0, T ], H)) and
t ∈ [0, T ].
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• Note that I1 =
∫ t

0
〈A(uε, ·), uε〉ds −

∫ t

0
〈A(uε, ·), u〉ds −

∫ t

0
〈χ, uε − u〉ds and

∫ t

0
〈A(uε, ·), uε〉ds =

∫ t

0
〈A(uε, ·) − A(v, ·), uε − v〉ds

+
∫ t

0
〈A(v, ·), uε − v〉ds +

∫ t

0
〈A(uε, ·), v〉ds

(λT I d + A is T-monotone ) ≥
∫ t

0
〈A(v, ·), uε − v〉ds +

∫ t

0
〈A(uε, ·), v〉ds

− λT

∫ t

0
‖uε − v‖2H ds.

• E(I2) = E
∫ t

0
〈−1

ε
[(uε − ψ)−]q̃−1, uε − u〉ds − E

∫ t

0
〈ρ, uε − u〉ds

≥ E
∫ t

0
〈−1

ε
[(uε − ψ)−]q̃−1, ψ − u〉ds − E

∫ t

0
〈ρ, uε − u〉ds.

• Since I3 is a Ft -martingale then E(I3) = 0.

• Thanks to H3 we have E(I4) ≤ M E
∫ t

0
‖uε(s) − u(s)‖2H ds.

By gathering the previous computation and taking the expectation, one has for any
t ∈ [0, T ]

1

2
E‖(uε − u)(t)‖2H + E

∫ t

0

[
〈A(v, ·), uε − v〉 + 〈A(uε, ·), v − u〉 − 〈χ, uε − u〉

]
ds

+ E
∫ t

0
〈−1

ε
[(uε − ψ)−]q̃−1, ψ − u〉ds − E

∫ t

0
〈ρ, uε − u〉ds

≤ (M + λT )E
∫ t

0
‖uε(s) − u(s)‖2H ds.

By passing to the limit as ε → 0, thanks to Lemmas 5 and 7 and by setting t = T , we
get

E
∫ T

0
〈A(v, ·) − χ, u − v〉ds ≤ E

∫ T

0
〈ρ, u − ψ〉ds = 0.

We are now in a position to use “Minty’s trick” [25, Lemma 2.13 p.35] and deduce
that A(u, ·) = χ .
So, the conclusion of this section is: under assumption H7, there exists a unique
(u, ρ) ∈ L p(ΩT , V ) × Lq̃ ′

(ΩT , Lq̃ ′
(D)), both predictable, satisfying:

• u ∈ L2(Ω, C([0, T ], H)) ∩ K and ρ ≤ 0.

• For any t ∈ [0, T ]: u(t) +
∫ t

0
(A(u, ·) + ρ − f )ds = u0 +

∫ t

0
G(u, ·)dW (s).
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• The first part of Lewy–Stampacchia’s inequality holds:

∂t (u −
∫ ·

0
G(u, ·)dW ) + A(u, ·) − f = −ρ ≥ 0 in Lq̃ ′

(ΩT × D).

• 〈ρ, u − ψ〉 = 0 a.e. in ΩT and, for any v ∈ K , 〈ρ, u − v〉 ≥ 0 a.e. in ΩT .

3.2 The second Lewy–Stampacchia’s inequality with a regular h−

The aim of this subsection is to prove the second part of Lewy–Stampacchia’s inequal-
ity. For this, we used an idea inspired by [9]. Let u be the unique solution of Sect. 3.1
and denote by K1 the closed convex set

K1 = {v ∈ L p(ΩT , V ), v ≤ u a.e. in D × ΩT }.

We recall that u satisfies

( f +h−)−∂t (u−
∫ ·

0
G(u, ·)dW )−A(u, ·)=h−+ρ, ρ ≤ 0, ρ ∈ Lq̃ ′

(ΩT × D).

Consider the following auxiliary problem: (z, ν) ∈ L p(ΩT , V ) × Lq̃ ′
(ΩT , Lq̃ ′

(D)),
predictable, such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i .) z ∈ L2(Ω, C([0, T ], H)), z(0) = u0 and z ∈ K1,

i i .) ν ≥ 0, 〈ν, z − u〉 = 0 and ∀v ∈ K1, 〈ν, z − v〉 ≥ 0, a.e. in ΩT .

i i i .) P-a.s. and for any t ∈ [0, T ] :
z(t) +

∫ t

0
νds +

∫ t

0
A(z, ·)ds = u0 +

∫ t

0
G(z, ·)dW (s) +

∫ t

0
( f + h−)ds.

(12)

Note that the result of existence and uniqueness of the solution (z, ν) can be proved
either by noting that (−z,−ν) is the solution to the above problem with data: f̃ =
− f − h−, G̃(v, ·) = −G(−v, ·), Ã(v, ·) = −A(−v, ·), ψ̃ = −u, h̃+ = −ρ and
h̃− = h−. This can also be obtained by cosmetic changes of what has been done in
Sect. 3.1, by passing to the limit in the following penalized problem:

⎧⎨
⎩

zε(t)+
∫ t

0
(A(zε, ·)+1

ε
[(zε−u)+]q̃−1−( f +h−))ds=u0+

∫ t

0
G̃(zε, ·)dW (s)

zε(0) = u0,

where G̃(zε, ·) = G(min(zε, u), ·).
Moreover, ∂t (z −

∫ ·

0
G(z, ·)dW )+ A(z, ·)−( f +h−) = −ν ≤ 0 in Lq̃ ′

(ΩT × D)

and z satisfies the following Lewy–Stampacchia’s inequality:

∂t (z −
∫ ·

0
G(z, ·)dW ) + A(z, ·) − f ≤ h− in Lq̃ ′

(ΩT × D).
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We know already that z ≤ u and our aim is now to prove that z = u. For that, it is
sufficient to prove that z ≥ ψ . Indeed, let us assume for a moment that z ≥ ψ, then

〈ρ, u − z〉 = 〈ρ, u − ψ〉 + 〈ρ,ψ − z〉 = 〈ρ,ψ − z〉 ≥ 0.

Thus we have 〈ν, z − u〉 = 0 and 〈ρ − ν, u − z〉 = 〈ρ, u − z〉 + 〈ν, z − u〉 ≥ 0.
Therefore, applying Ito’s energy to

u(t) − z(t) +
∫ t

0
ρ − νds +

∫ t

0
A(u, ·) − A(z, ·)ds

=
∫ t

0
G(u, ·) − G(z, ·)dW (s) −

∫ t

0
h−ds.

yields for any t ∈ [0, T ]

1

2
‖(u − z)(t)‖2H +

∫ t

0
〈A(u, ·) − A(z, ·), u − z〉︸ ︷︷ ︸

(λT I d+A is T-monotone)≥−λT ‖u−z‖2H

ds +
∫ t

0
〈ρ − ν, u − z〉ds

︸ ︷︷ ︸
≥0

+
∫ t

0
〈h−, u − z〉ds

︸ ︷︷ ︸
(u≥z) ≥0

=
∫ t

0
〈(G(u, ·) − G(z, ·))dW (s), u − z〉 + 1

2

∫ t

0
|G(u, ·) − G(z, ·)|2Qds.

By similar arguments leading to (3), we conclude that u = z.
To conclude this subsection, we need to prove that z ≥ ψ .
We know that u ≥ ψ so that u − z = (u − z)+ ≥ (ψ − z)+ and u ≥ z + (ψ − z)+ =
z + (z − ψ)−.
Using v = z + (z − ψ)− ∈ K1 in (12)[ii.] yields 〈ν, (z − ψ)−〉 ≤ 0.

We have

z(t) − ψ(t) +
∫ t

0
ν − h+ds +

∫ t

0
A(z, ·) − A(ψ, ·)ds

= u0 − ψ(0) +
∫ t

0
G(z, ·) − G(ψ, ·)dW (s).

123



Stoch PDE: Anal Comp

As in the proof of Lemma 3, consider ϕδ(v) =
∫

D
Fδ(v(x))dx and S = {z ≤ ψ}.

Applying Ito’s formula [20, Th. 5.3 p. 78] to the process z − ψ , one gets: ∀t ∈ [0, T ]

ϕδ(z(t) − ψ(t)) +
∫ t

0
〈A(z, ·) − A(ψ, ·), F ′

δ(z − ψ)〉ds

+
∫ t

0
〈ν − h+, F ′

δ(z − ψ)〉ds −
=0︷ ︸︸ ︷

ϕδ(u0 − ψ(0))

=
∫ t

0
〈G(z, ·) − G(ψ, ·)dW (s), F ′

δ(z − ψ)〉

+ 1

2

∫ t

0
|
√

F ′′
δ (z − ψ)[G(z, ·) − G(ψ, ·)]|2Qds.

Note that

∫ t

0
|
√

F ′′
δ (z − ψ)[G(z, ·) − G(ψ, ·)]|2Qds ≤8M

3

∫ t

0
‖z(s) − ψ(s)‖2H ISds

=8M

3

∫ t

0
‖(z − ψ)−(s)‖2H ds.

Taking the expectation and passing to the limit when δ → 0,

• ∀t ∈ [0, T ], Eϕδ(z(t) − ψ(t)) −→ E‖(z − ψ)−(t)‖2
L2(D)

,

• E
∫ t

0
〈A(z, ·) − A(ψ, ·), F ′

δ(z − ψ)〉ds −→ E
∫ t

0
〈A(z, ·) − A(ψ, ·),−2(z −

ψ)−〉ds
= 2E

∫ t
0 〈A(ψ, ·) − A(z, ·), (ψ − z)+〉ds

≥ −2λT

∫ t

0
‖(ψ − z)+‖2H ds,

• E
∫ t

0
〈ν − h+, F ′

δ(z − ψ)〉ds → −2E
∫ t

0
〈ν − h+, (z − ψ)−〉ds

= 2(E
∫ t

0
〈h+, (z − ψ)−〉 + 〈ν,−(z − ψ)−〉ds)︸ ︷︷ ︸

(thanks (12)[ii.]) ≥0

≥ 0.

Those limits may be obtained by Lebesgue’s theorem and, for any t ∈ [0, T ] :

E‖(z − ψ)−(t)‖2H ≤ C
∫ t

0
E‖(z − ψ)−(s)‖2H ds.

Finally, Gronwall’s lemma ensures that ψ ≤ z, and, as conclusion of this subsection,
we get z = u. Hence, u satisfies the second part of Lewy–Stampacchia’s inequality:

∂t (u −
∫ ·

0
G(u, ·)dW ) + A(u, ·) − f ≤ h− in Lq̃ ′

(ΩT × D).
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From Sects. 3.1 and 3.2, we deduce the following theorem.

Theorem 2 Under Assumptions (H1)–(H6) and assuming moreover that h− ∈
Lq̃ ′

(ΩT , Lq̃ ′
(D)) is predictable, there exists a unique predictable stochastic process

(u, k) ∈ L p(ΩT , V ) × Lq̃ ′
(ΩT , Lq̃ ′

(D)) such that:

i. u ∈ L2(Ω, C([0, T ], H)) ∩ K , u(0) = u0.
ii. k ≤ 0 and ∀v ∈ K , 〈k, u − v〉 ≥ 0 a.e. in ΩT .

iii. P-a.s, for all t ∈ [0, T ],

u(t) +
∫ t

0
kds +

∫ t

0
A(u, ·)ds = u0 +

∫ t

0
G(u, ·)dW (s) +

∫ t

0
f ds.

iv. The following Lewy–Stampacchia’s inequality holds:

0 ≤ ∂t (u −
∫ ·
0

G(u, ·)dW ) + A(u, ·) − f ≤ h− =
(

f − ∂t (ψ −
∫ ·
0

G(ψ, ·)dW ) − A(ψ, ·)
)−

.

3.3 Proof of themain theorem in the general case

First, we prove the following lemma which allows us to pass from the regular to the
general case.

3.3.1 Density result in the positive cone of the dual

Lemma 8 The positive cone of L p(ΩT , V ) ∩ L2(ΩT , L2(D)) is dense in the pos-
itive cone of L p′

(ΩT , V ′). Moreover, the positive cone of predictable elements of
L p(ΩT , V )∩ L2(ΩT , L2(D)) is dense in the positive cone of predictable elements of
L p′

(ΩT , V ′).
By a truncation argument, the same result holds for the positive cone of L p(ΩT , V )∩
L p′

(ΩT , L p′
(D)) (resp. predictable).

Proof Since the proof of the lemma is mainly based on monotone arguments, it is
similar to the one proposed in [13, Lemma4.1]where one has just to add the predictable
assumption to the spaces of type Lr (0, T , X) in [13, Lemma 4.1] if needed. ��
3.3.2 Proof of Theorem 1

Let h− ∈ (L p′
(ΩT , V ′))+ predictable. Thanks to Lemma 8, there exists hn ∈

Lq̃ ′
(ΩT , Lq̃ ′

(D)) predictable and non negative such that

hn −→ h− in L p′
(ΩT , V ′).

Associated with hn , denote the following fn by,

fn = ∂t (ψ −
∫ ·

0
G(ψ, ·)dW ) + A(ψ, ·) + h+

−hn, h+ ∈ (L p′
(ΩT , V ′))+ predictable too.
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Note that fn ∈ L p′
(ΩT , V ′) is predictable and fn converges strongly to f in

L p′
(ΩT , V ′).

Denote by (un, kn) the sequence of solutions given by Theorem 2where h− is replaced
by hn .
By Lewy–Stampacchia’s inequality, one has 0 ≤ −kn ≤ hn .
For any ϕ ∈ L p(ΩT , V ), it holds that

E
∫ T

0
|〈kn, ϕ〉|ds ≤ E

∫ T

0
〈−kn, ϕ+〉ds + E

∫ T

0
〈−kn, ϕ−〉ds

≤ E
∫ T

0
〈hn, ϕ+〉ds + E

∫ T

0
〈hn, ϕ−〉ds

≤ 2‖hn‖L p′
(ΩT ,V ′)‖ϕ‖L p(ΩT ,V ).

Since (hn)n converges to h in L p′
(ΩT , V ′), one gets that (hn)n is bounded inde-

pendently of n in L p′
(ΩT , V ′) and therefore (kn)n is bounded independently of n in

L p′
(ΩT , V ′).

Let n ∈ N
∗ and applying Ito’s energy formula to the process un , one gets for any

t ∈ [0, T ]

1

2
‖un(t)‖2H +

∫ t

0
〈A(un, ·), un〉ds =1

2
‖u0‖2H +

∫ t

0
〈−kn, un〉ds +

∫ t

0
〈 fn, un〉ds

+
∫ t

0
〈G(un, ·)dW (s), un〉 + 1

2

∫ t

0
|G(un, ·)|2Qds.

Since fn converges to f in L p′
(ΩT , V ′), it holds that ( fn)n is bounded independently

of n in L p′
(ΩT , V ′). Therefore, by Young’s inequality, we get

E
∫ T

0
|〈 fn − kn, un〉|ds ≤ α

2
E

∫ T

0
‖un(s)‖p

V ds + C‖ fn − kn‖p′
L p′

(ΩT ,V ′).

By Burkhölder–Davis–Gundy’s inequality and Young’s inequality, there exists δ >

0 such that

E

[
sup

t∈[0,T ]
|
∫ t

0
〈G(un, ·)dW (s), un〉|

]
≤3δ

2
E sup

t∈[0,T ]
‖un(t)‖2H

+ 3M

2δ
E

∫ T

0
‖un(s)‖2H ds + 3

2δ
‖l‖L1(ΩT ).

With a convenient choice of δ (e.g. δ = 1
4 ) and using H2,1, H3,2, one deduces

E sup
t∈[0,T ]

‖un(t)‖2H + E
∫ T

0
‖un(s)‖p

V ds ≤ C(1 + E
∫ T

0
sup

τ∈[0,s]
‖un(τ )‖2H ds).

123



Stoch PDE: Anal Comp

By using Gronwall’s lemma, one concludes that (un)n is bounded in L p(ΩT , V ) ∩
L2(Ω, L∞(0, T , H)).
Now, we present the following lemma about the strong convergence of (un)n .

Lemma 9 (un)n is a Cauchy sequence in the space L2(Ω, C([0, T ], H)).

Proof Let m, n ∈ N
∗ and ε > 0. For any t ∈ [0, T ] and P-a.s, we have

un(t) − um(t) +
∫ t

0
(kn − km)ds +

∫ t

0
(A(un, ·) − A(um, ·))ds

=
∫ t

0
(G(un, ·) − G(um, ·))dW (s) +

∫ t

0
( fn − fm)ds.

Applying Ito’s energy formula, one gets for any t ∈ [0, T ],
1

2
‖(un − um)(t)‖2H +

∫ t

0
〈A(un, ·) − A(um, ·), un − um〉ds

= −
∫ t

0
〈kn − km, un − um〉ds +

∫ t

0
〈 fn − fm, un − um〉ds

+
∫ t

0
〈(G(un, ·) − G(um, ·))dW (s), un − um〉 + 1

2

∫ t

0
|G(un, ·) − G(um, ·)|2Qds.

Similarly to the proof of Lemma 1, one deduces

E sup
t∈[0,T ]

‖(un − um)(t)‖2H ≤ C‖ fn − fm‖L p′
(ΩT ,V ′)‖un − um‖L p(ΩT ,V ).

Since fn converges strongly to f in L p′
(ΩT , V ′) and (un)n is bounded in L p(ΩT , V ),

it holds that

E
∫ T

0
〈 fn − fm, un − um〉ds ≤ ‖ fn − fm‖L p′

(ΩT ,V ′)‖un − um‖L p(ΩT ,V ) ≤ Cε,

for big values of n and m. Therefore (un)n is a Cauchy sequence in the space
L2(Ω, C([0, T ], H). ��

Since (un)n is bounded sequence in L p(ΩT , V ) of predictable processes, Remark 1
and H2,3 yield that (A(un, ·))n is a bounded sequence in L p′

(ΩT , V ′) of predictable
processes.
By compactness with respect to the weak topology in the spaces L p(ΩT , V ) and
L p′

(ΩT , V ′), there exist u ∈ L p(ΩT , V ), χ ∈ L p′
(ΩT , V ′) and k ∈ L p′

(ΩT , V ′),
each one being predictable, such that (up to sub-sequences denoted by the same way)

un⇀u in L p(ΩT , V ), (13)

A(un, ·)⇀χ in L p′
(ΩT , V ′), (14)

kn⇀k in L p′
(ΩT , V ′). (15)
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Thanks to Lemma9,we have the strong convergence of un to u in L2(Ω, C([0, T ], H))

thus in L2(ΩT , L2(D)) and u ∈ N 2
W (0, T , H).

Since (−kn) ∈ (L p′
(ΩT , V ′))+ and −kn⇀k in L p′

(ΩT , V ′), we deduce that −k ∈
(L p′

(ΩT , V ′))+. Indeed, let ϕ ∈ L p(ΩT , V ), ϕ ≥ 0 then

E
∫ T

0
〈−k, ϕ〉ds = lim

n→∞ E
∫ T

0
〈−kn, ϕ〉ds ≥ 0.

Remark 9 (Initial condition and constraint).

• Since un converges to u in L2(Ω, C([0, T ], H)) with un(0) = u0, one has that
u(0) = u0.

• Since K is a closed convex subset of L p(ΩT , V ), it holds that u ∈ K .

Similarly to the proof of Lemma 6, one gets

∫ ·

0
G(un, ·)dW (s) →

∫ ·

0
G(u, ·)dW (s) in L2(Ω, C([0, T ], H)) when n → ∞.

So, at the limit, we have a.s. and for any t ∈ [0, T ]

u(t) +
∫ t

0
kds +

∫ t

0
χds = u0 +

∫ t

0
G(u, ·)dW (s) +

∫ t

0
f ds.

For any n ∈ N
∗, we have a.s. and for any t ∈ [0, T ]

un(t) +
∫ t

0
knds +

∫ t

0
A(un, ·)ds = u0 +

∫ t

0
G(un, ·)dW (s) +

∫ t

0
fnds.

Note that (A(un, ·) − χ) + (kn − k) + ( fn − f ) ∈ L p′
(ΩT , V ′) is predictable and∫ t

0
(G(un, ·) − G(u, ·))dW (s) is a square integrable Ft−martingale. We can apply

Ito’s formula [20, Theorem 4.2 p. 65] to the process un − u with F(v) = 1

2
‖v‖2H to

get

1

2
‖(un − u)(t)‖2H +

∫ t

0
〈A(un, ·) − χ, un − u〉ds +

∫ t

0
〈kn − k, un − u〉ds

=

I1(t)︷ ︸︸ ︷∫ t

0
〈(G(un, ·) − G(u, ·))dW (s), un − u〉 +

I2(t)︷ ︸︸ ︷
1

2

∫ t

0
|G(un, ·) − G(u, ·)|2Qds

+

I3(t)︷ ︸︸ ︷∫ t

0
〈 fn − f , un − u〉ds .
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Thanks to Lemma 7, 〈kn, un − ψ〉 = 0 and one has

〈kn − k, un − u〉 = 〈kn, un − u〉 − 〈k, un − u〉
= 〈kn, un − ψ〉 + 〈kn, ψ − u〉 − 〈k, un − u〉 = 〈kn, ψ − u〉 − 〈k, un − u〉.

Therefore

E
∫ T

0
〈kn − k, un − u〉ds = E

∫ T

0
〈kn, ψ − u〉ds −

→0︷ ︸︸ ︷
E

∫ T

0
〈k, un − u〉ds

−→ E
∫ T

0
〈k, ψ − u〉ds ≥ 0.

Since fn converges strongly to f in L p′
(ΩT , V ′), (13) ensures that E(I3(T )) → 0.

Similarly to the last part of Sect. 3.1, one has: E(I1(t)) = 0, E(I2(T )) → 0 and, for
any v ∈ L p(ΩT , V ) ∩ L2(Ω, C([0, T ], H)),

E
∫ T

0
〈k, ψ − u〉ds + E

∫ T

0
〈A(v, ·) − χ, u − v〉ds ≤ 0. (16)

By setting v = u in (16), one has E
∫ T

0
〈k, ψ − u〉ds ≤ 0.

Therefore E
∫ T

0
〈k, ψ − u〉ds = 0.

Since −k ∈ (L p′
(ΩT , V ′))+, −k(t, ω) ∈ (V ′)+ a.e. in ΩT . ‘

Hence, 〈k(s, ω), ψ − u〉 ≥ 0 and 〈k(s, ω), ψ − u〉 = 0 a.e. in ΩT .

By (16), we get E
∫ T

0
〈A(v, ·) − χ, u − v〉ds ≤ 0 , then, using “Minty trick” one

concludes that χ = A(u, ·).
Let v ∈ K , then a.e. ΩT , we have 〈k, u − v〉 = 〈k, u − ψ〉 + 〈k, ψ − v〉 ≥ 0.

We deduce the existence result of Theorem 1 for general f . At last, Lewy–
Stampacchia’s inequality is a consequence of the passage to the limit in the one satisfied
by un .
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4 Examples of numerical illustrations

Consider the following problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du − αuxx ds + kds = f ds + σudW in ]0, 1[×Ω×]0, 1],
u(t = 0) = u0 ≥ 0 in L2(0, 1), a.s.,

u ≥ 0 in [0, 1] × Ω × [0, 1],
u(0, t) = u(1, t) = 0 on Ω × [0, 1],
〈k, u〉 = 0 and k ≤ 0 in Ω × [0, 1]

(17)

where α > 0, σ ∈ R and f is a smooth function. By [23, Thm 5] or the above Theo-
rem 1, there exists a unique solution (u, k) to Problem (17) in the sense of Definition 2
with p = 2 and D =]0, 1[. Moreover, The following Lewy–Stampacchia’s inequality
holds

0 ≤ ∂t

(
u − σ

∫ ·

0
udW

)
− αuxx − f ≤ h− = f −.

Note that thanks to Remark 3, this basic situation of a constraint of positivity with a
vanishing stochastic reaction term at 0 can be an illustration of amore general situation.

In this section, we propose some numerical illustrations of the solution of the
obstacle problem (17) and, at the same time, we compare them to the numerical
solution of the free problem i.e the stochastic heat equation when the constraint u ≥ 0
is ignored.
To the best of the author’s knowledge, there doesn’t exist in the literature numerical
studies of stochastic obstacle problems. Inspired by previous sections, our aim is to
present some numerical illustrations of the stochastic obstacle problem (17) via a
penalty method, i.e. an approximation by the family (Pε)ε>0 of penalized problems:

Pε :

⎧
⎪⎪⎨
⎪⎪⎩

uε(t) −
∫ t

0
(αuε

xx + 1

ε
[(uε)−] + f )ds = u0 + σ

∫ t

0
uε(s)dW (s)

uε(0) = u0,

uε(0, t) = uε(1, t) = 0 on Ω × [0, 1].
(18)

For that, one needs a suitable choice of the small parameter ε compatible with the
space and time discretization steps.

Let us denote by Δt = 1

N
the time step of the uniform discretization of the time-

interval [0, 1], {t0, · · · , tN } are the points of this discretization. Similarly, Δx = 1

M
is the uniform space step discretization of the space-interval [0, 1] and {x0, · · · , xM }
are the points of the space discretization. Then, following what is usually done in the
deterministic case (see e.g. [26]), one sets ε = Δt = (Δx)2 to ensure the convergence
of the scheme (19) below to the solution of (17).
Denote by Ui

j the approximate solutions at time ti , computed at x j when U0 is given
by the initial condition, via U0 = {u0(x1), · · · , u0(xM−1)}.
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Fig. 1 Pathwise trajectory at x = 0.1

Fig. 2 Pathwise trajectory at x = 0.5

We consider the following approximate discretized problem obtained via a penalty
method, a stochastic “Saul’yev scheme” (see [12]) i.e

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U j
i = 1

1 + β
(βU j+1

i−1 + (1 − β)U j
i−1 + βU j−1

i ) + σU j
i−1

1 + β
(W (ti ) − W (ti−1)

+ Δt

1 + β
f (ti−1, x j ) + Δt

ε(1 + β)
(U j

i−1)
−, 1 ≤ j ≤ M − 1, 1 ≤ i ≤ N ,

U j
0 = u0(x j ), 1 ≤ j ≤ M − 1

U 0
i = U M+1

i = 0, 0 ≤ i ≤ N ,

(19)
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Fig. 3 Mean of 5000 samples paths and deterministic solution at x = 0.5 for the heat equation

Fig. 4 Mean of 5000 samples paths and deterministic solution at x = 0.5 with the constraint

where β = α
Δt

(Δx)2
.

The numerical simulations of Figs. 1, 2, 3, and 4 are implemented with the free
software Scilab and the following data: u0(x) = sin(πx), α = 1, f (x, t, ω) =
3 cos(4π t), σ = 2, N = 900 and M = 30.

• In the first two figures, we present pathwise trajectories of the penalized problem
(19) in full line and of the free stochastic problem (without the penalization-term)
in dotted-line. Fig. 1 represents the simulation at point x = 0.1, close to the
boundary, and Fig. 2 at point x = 0.5 in the middle of the domain.
One can see that, as expected, the trajectories of the free and obstacle problems
are the same before the first time-contact with the obstacle. When the constraint is
active for Problem (19), the solution is equal to the constraint 0, else it is positive.
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• In the last two figures, we present the simulation of the deterministic problem (i.e.
when σ = 0) in dotted-line and the mean of 5000 trajectories of the stochastic
problem in full line. Figure 3 represents the simulations of the problem without
constraint and Fig. 4 is concerned by Problem (19).
As expected for the linear heat equation (case of Fig. 3), the mean of the stochastic
paths coincides with the solution to the deterministic problem. The situation is
slithy different for the problem with constraint. Indeed, even if the constraint is
deterministic, the penalization, and the Lagrange multiplier at the limit, induces a
non linear term. Thus, the mean and the deterministic solution may differ.

Acknowledgements The authors would like to thank IFCAM: Indo-French Center in AppliedMathematics
(UMI CNRS 3494). The authors would like also to thank the anonymous referees for their help in improving
our work.

5 Appendix

5.1 Itô’s formula with non-nul trace on the boundary

We are interested in this subsection in replacing the assumption ψ ∈ L p(ΩT , V ) of
H4 by ψ ∈ L p

(
ΩT , W 1,p(D) ∩ L2(D)

) ∩ Lmax(p,p′)(Ω, C([0, T ], L2(D))
)
with a

non-positive trace on the boundary.3 This situation appears for example if A is a Leray–
Lions type differential operator of the form A(u, t, ω) = −div(a(t, ω, x,∇u)) +
b(t, ω, x, u) that can be defined on ΩT × W 1,p(D) ∩ L2(D) with values in V ′ by:
(t, ω) ∈ ΩT a.e.,

〈A(u, t, ω), v〉 =
∫

D
a(t, ω, x,∇u)∇vdx +

∫

D
b(t, ω, x, u)vdx, ∀v ∈ V .

In order to be able to follow the same steps of our demonstration, only two major
points need to be adapted: the first one is in the proof of Lemma 2 where choosing
v∗ = ψ is not possible anymore; the second one is in the proof of Lemma 3 since, in
this new situation, u −ψ is not with values in V anymore and the classical Itô formula
no longer applies. The other modifications are minor ones based on embeddings of V
into some Lebesgue’s spaces that still hold when replacing W 1,p

0 (D) by W 1,p(D).
Concerning the question of v∗, one can chose for it the solution to the problem

∂t

[
v∗ −

∫ ·

0
G̃(v∗, ·)dW

]
− Δpv

∗ = ∂t

[
ψ −

∫ ·

0
G̃(ψ, ·)dW

]
− Δpψ = f̄

associated with Dirichlet boundary conditions, v∗(0) = ψ(0) and where, by assump-
tion f̄ is a predictable process in L p′

(ΩT , V ′). v∗ exists with the convenient regularity
and one still need to prove that v∗ ≥ ψ to have it in K and use it in the proof. This is

3 Note that the pathwise continuity assumption can be implicit thanks to arguments similar to [13, Lemma
4.7].
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achieved by applying formally Itô’s formula to the process (v∗ − ψ)− where

d(v∗ − ψ) − [Δpv
∗ − Δpψ]dt = [G̃(v∗, ·) − G̃(ψ, ·)]dW .

The question related to Lemma 3 is similar since the proof is based on the possibility
to apply Itô’s formula to the process (uε − ψ)− where

d(uε − ψ) + [A(uε, ·) − A(ψ, ·)]dt − 1

ε
[(uε − ψ)−]q̃−1dt

= hdt + [G̃(uε, ·) − G̃(ψ, ·)]dW . (20)

In both situation, one has a predictable process X , being v∗ − ψ in the first case and
uε − ψ is the second one, with values in W 1,p(D) ∩ L2(D) and not a priori V , such
that d X + Adt = GdW where A is with values in V ′ and G in L Q(L2(D)). This
is not a classical situation and Itô’s formula associated with the negative-part should
apply since X has a positive trace on the boundary of D and thus X− is with values
in V .
For any positive integer n, denote by Φn the function x �→ min(1, nd(x, ∂ D)). This
is a sequence of bounded 1-Lipschitz continuous functions that converges a.e. to 1 in
D. Thus, for any u ∈ W 1,p(D) ∩ L2(D), the product uΦn is in V and if moreover u
belongs to V , then uΦn converges to u in V .
Indeed, convergences of uΦn to u in L p(D) ∩ L2(D) and Φn∇u to ∇u in L p(D) are
just applications of Lebesgue Theorem, and

u∇Φn = nu∇d(·, ∂ D)1{0<d(·,∂ D)< 1
n },

|u∇Φn| ≤ n|u|1{0<d(·,∂ D)< 1
n } ≤ |u|

d(·, ∂ D)
1{0<d(·,∂ D)< 1

n },

and u∇Φn tends to 0 in L p(D) since, by Hardy’s inequality, u
d(·,∂ D)

is in L p(D).
Since the product Φn A for A in V ′ is ϕ ∈ V �→ 〈A, Φnϕ〉, one gets that

d XΦn + Φn Adt = ΦnGdW

with now XΦn with values in V so that Itô’s formula is applicable, in particular with
the function Fδ introduced in (5). Thus, with the notations of the proof of Lemma 3

ϕδ(XΦn) +
∫ t

0
〈A, Φn F ′

δ(XΦn)〉ds

=
∫ t

0
ΦnG F ′

δ(XΦn)dW + 1

2

∫ t

0
T r(F ′′

δ (XΦn){ΦnG}Q{ΦnG}∗)ds.

Note that F ′
δ(XΦn) = F ′

δ(−X−Φn) and since X− is in V , passing to the limit in n
is possible. Thus, the desired Itô formula is proved for X and Theorem 1 holds when
one assumes that the obstacle may have a non-positive value on the boundary of D.
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5.2 On bilateral problems

We are interested in this subsection in saying few words about the situation of double
obstacles problems. First, let us precise assumptions on obstacles.

H∗
4 : ψ1, ψ2 satisfy H4 with ψ2 ≥ ψ1 a.e. in : D × ΩT .

H∗
5 : Assumption H5 is satisfied by both obstacles ψi i = 1, 2:

hi = h+
i − h−

i = f − ∂t

(
ψi −

∫ ·

0
G(ψi , ·)dW

)
− A(ψi , ·)

with the associated regularity information.
H∗
6 : u0 satisfies the constraints, i.e. ψ2(0) ≥ u0 ≥ ψ1(0).

H∗
7 : h−

1 , h+
2 are predictable non negative elements of Lq̃ ′

(ΩT , Lq̃ ′
(D)).

The convex set of admissible functions becomes

K ψ2
ψ1

= {v ∈ L p(ΩT , V ), ψ1(x, t, ω) ≤ v(x, t, ω) ≤ ψ2(x, t, ω) a.e. in D × ΩT },

and note that K ψ2
ψ1

is not empty since ψi ∈ K ψ2
ψ1

, i = 1, 2.
The idea is to follow the same strategy than the one used in the one obstacle case. In
other words, we consider the same assumptions on the operator A, the multiplicative
noise G and update the other assumptions. The corresponding penalized problem is

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uε(t) +
∫ t

0
(A(uε, ·) − 1

ε
[(uε − ψ1)

−]q̃−1 + 1

ε
[(uε − ψ2)

+]q̃−1 − f )ds

= u0 +
∫ t

0
G̃(uε, ·)dW (s)

uε(0) = u0,

(21)

where G̃(uε, ·) = G(max(min(uε, ψ2), ψ1), ·), which satisfies properties similar to
G and behaves formally as an additive stochastic source on the free-set where the
constraints are violated.
By cosmetic changes ofwhat has been done in Sect. 3 and by noticing that the penalized
term is the sum of two parts with disjoint supports, one can prove the boundedness
of the two parts of penalized terms independently. Then, passing to the limit in (21)
to prove the existence of a solution. Finally, we can prove the two parts of Lewy–
Stampacchia inequalities independently by adapting the arguments used in Sect. 3.2;
and the one of the proof of Lemma 1 to get the uniqueness result. Thus, one gets

Theorem 3 Under Assumptions (H1)–(H3) and (H∗
i , i=4,5,6,7), there exists a unique

predictable stochastic process (u, ρ1, ρ2) ∈ L p(ΩT , V ) × Lq̃ ′
(ΩT , Lq̃ ′

(D)) ×
Lq̃ ′

(ΩT , Lq̃ ′
(D)) such that:

i. u ∈ L2(Ω, C([0, T ], H)) ∩ K ψ2
ψ1

, u(0) = u0.

ii. −ρ1, ρ2 ≥ 0 and ∀v ∈ K ψ2
ψ1

, 〈ρi , u − v〉 ≥ 0, i = 1, 2 a.e. in ΩT .
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iii. P-a.s, for all t ∈ [0, T ],

u(t) +
∫ t

0
(ρ1 + ρ2)ds +

∫ t

0
A(u, ·)ds = u0 +

∫ t

0
G(u, ·)dW (s) +

∫ t

0
f ds.

iv. The following Lewy–Stampacchia’s inequality holds:

−h+
2 = −

(
f − ∂t (ψ2 −

∫ ·

0
G(ψ2, ·)dW ) − A(ψ2, ·)

)+

≤ ∂t (u −
∫ ·

0
G(u, ·)dW ) + A(u, ·) − f

≤ h−
1 =

(
f − ∂t (ψ1 −

∫ ·

0
G(ψ1, ·)dW ) − A(ψ1, ·)

)−
.

The reader interested in relaxing Assumption H∗
7 could be inspired by the strategy of

[18], for example.
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