Variational methods, linearization tools, and symmetrization for spectral problems with the p-Laplacian (lectures for advanced Ph.D. students, Jaca 2010)

Peter Takáč

Institut für Mathematik, Universität Rostock, D-18055 Rostock, Germany e-mail: peter.takac@uni-rostock.de

January 11, 2010

ABSTRACT. We look for weak solutions $u \in W_0^{1,p}(\Omega)$ of the degenerate quasilinear Dirichlet boundary value problem

(P)
$$-\Delta_p u = \lambda |u|^{p-2} u + f(x, u(x)) \text{ in } \Omega; \qquad u = 0 \text{ on } \partial\Omega.$$

It is assumed that $1 , <math>p \neq 2$, $\Delta_p u \equiv \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplacian, Ω is a bounded domain in \mathbb{R}^N , $f(\cdot, u) \in L^{\infty}(\Omega)$ is a given function of $u \in \mathbb{R}$, and λ stands for the (real) spectral parameter. If $f(x, u) \equiv f(x)$ is independent from $u \in \mathbb{R}$, problem (P) is closely connected with the Fredholm alternative for the (p-1)-homogeneous quasilinear operator $-\Delta_p$ on $W_0^{1,p}(\Omega)$. Such weak solutions are precisely the critical points of the corresponding energy functional on $W_0^{1,p}(\Omega)$,

(J)
$$\mathcal{J}_{\lambda}(u) \stackrel{\text{def}}{=} \frac{1}{p} \int_{\Omega} |\nabla u|^p \, \mathrm{d}x - \frac{\lambda}{p} \int_{\Omega} |u|^p \, \mathrm{d}x - \int_{\Omega} f(x) \, u \, \mathrm{d}x \,, \quad u \in W_0^{1,p}(\Omega) \,.$$

I.e., problem (P) is equivalent with $\mathcal{J}'_{\lambda}(u) = 0$ in $W^{-1,p'}(\Omega)$. Here, $\mathcal{J}'_{\lambda}(u)$ stands for the (first) Fréchet derivative of the functional \mathcal{J}_{λ} on $W^{1,p}_{0}(\Omega)$ and $W^{-1,p'}(\Omega)$ denotes the (strong) dual space of the Sobolev space $W^{1,p}_{0}(\Omega), p' = p/(p-1)$.

We will describe a global minimization method for this functional provided $\lambda < \lambda_1$, together with the (strict) convexity of the functional for $\lambda \leq 0$ and possible "nonconvexity" if $0 < \lambda < \lambda_1$. As usual, λ_1 denotes the first (smallest) eigenvalue λ_1 of the positive *p*-Laplacian $-\Delta_p$. Strict convexity will force the uniqueness of a critical point (which is then the global minimizer for \mathcal{J}_{λ}), whereas "nonconvexity" will be shown by constructing a saddle point which is different from any local or global minimizer.

Finally, we will discuss the *existence* and *multiplicity* of a solution for problem (P) when f(x, u) is decreasing in u. We will describe local and global minimization methods for the corresponding functional.

Keywords:nonlinear eigenvalue problem; Fredholm alternative;
degenerate or singular quasilinear Dirichlet problem;
p-Laplacian; global minimizer; minimax principle

2000 Mathematics Subject Classification: Primary 35J20, 49J35; Secondary 35P30, 49R50

- 1 Lecture 1: The Riesz representation theorem in $L^p(\Omega)$
- 2 Lecture 2:

The energy functional – convex / concave, convexity and uniqueness

- 3 Lecture 3: The (first and second) eigenvalues of $-\Delta_p$
- 4 Lecture 4: Nonconvex energy functional – minimization with constraint
- 5 Lecture 5: Existence by a topological degree